

Swiss Competence Centers for Energy Research Competence Center for Research in Energy, Society and Transition

Wirtschaftswissenschaftliche Fakultät

WWZ

FoNEW

Forschungsstelle für Nachhaltige Energieund Wasserversorgung

Strategic reserve for Switzerland: Is it needed and (how) would it work?

Jonas Savelsberg, Moritz Schillinger, Ingmar Schlecht, Hannes Weigt

16th IAEE European Conference Ljubljana 2019 Session 2A: Electricity I – Capacities

26.08.2019

Swiss Electricity System

WWZ

FoNEW

Swiss Electricity Market Design

Current Market Design:

• Energy-only market

Swiss Electricity Market Design

Current Market Design:

• Energy-only market

Market Design after 2020 (?):

- Energy-only market
- Strategic reserve:
 - Insurance for unforeseeable events, e.g.
 - Market failure
 - Political risk
 - Weather
 - Import restrictions

Strategic Reserve CH = Storage Reserve

WΖ

Strategic reserve for Switzerland:

- Is it needed? Does it help?
- Design?

FoN

Swiss Electricity Market Model (Swissmod)

Transmission System Model:

- ca. 230 nodes
- ca. 400 lines
- Neighboring countries aggregated

Swiss Electricity Market Model (Swissmod)

Transmission System Model:

- ca. 230 nodes
- ca. 400 lines
- Neighboring countries aggregated

m Hydro Structure:

- ca. 200 cascades with ca. 400 plants (>95% of production)
- Catchment specific inflows on monthly basis
- Endogenous operation

FoNEW

WWZ

Swiss Electricity Market Model (Swissmod)

Modelling of Storage Reserve:

 $\sum Reserve_{wn} \ge reserve_size$ wn

 $Storage_{t,wn} \ge Reserve_{wn}$

 $\forall t, wn \ if \ prequalified$

 $capacity_{wn} reserve_hours \ge Reserve_{wn}$

∀t,wn if prequalified

Scenarios for unforeseeable events

Autarky Situation:

- No imports possible for some time
- Critical time = March/ April

FoNEW

Overview:

Storage reserve (GWh)	Autarky Duration (hours in March/ April)	Lost Load (GWh)	Reserve price (EUR/MWh)
0	300	0	0
0	700	319	0
100	700	316	3.4
250	700	216	17.1
1'000	700	0	19.3

WWZ

Overview:

Storage reserve (GWh)	Autarky Duration (hours in March/ April)	Lost Load (GWh)	Reserve price (EUR/MWh)
0	300	0	0
0	700	319	0
100	700	316	3.4
250	700	216	17.1
1'000	700	0	19.3

- Short autarky = no storage reserve required

 \mathbf{Z}

Overview:

Storage reserve (GWh)	Autarky Duration (hours in March/ April)	Lost Load (GWh)	Reserve price (EUR/MWh)
0	300	0	0
0	700	319	0
100	700	316	3.4
250	700	216	17.1
1'000	700	0	19.3

- Long autarky = could lead to critical situations (realistic?)

SCCER CREST

Ζ

Overview:

Storage reserve (GWh)	Autarky Duration (hours in March/ April)	Lost Load (GWh)	Reserve price (EUR/MWh)
0	300	0	0
0	700	319	0
100	700	316	3.4
250	700	216	17.1
1'000	700	0	19.3

- Long autarky = storage reserve can help if properly designed

Ζ

Storage Reserve 1000 GWh:

 $I\mathbf{Z}$

Conclusion

- In general, storage reserve not needed for "realistic" scenarios
- Question: what are realistic unforeseeable events in which a storage reserve would be required?
- For e.g. long lasting import constraints, storage reserve can help
- Proper design (sizing) needed in relation to assumed 'crisis'
 - \rightarrow likelihood of large unused reserve
- Open points:
 - Impact of dry years and strategic behavior

