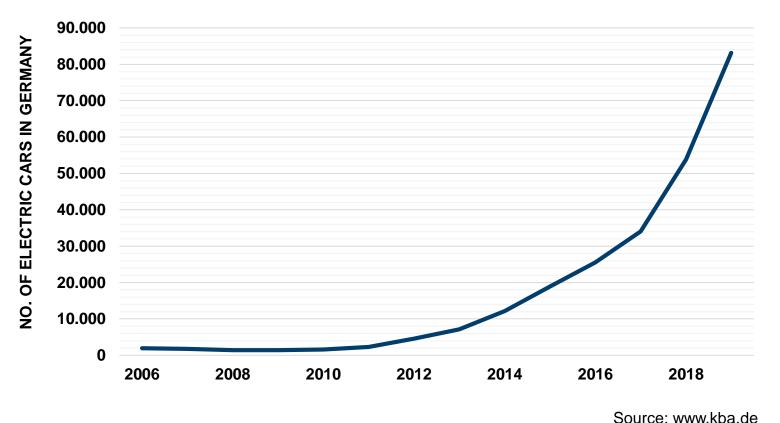


E-MOBILITY FROM A MULTI-ACTOR POINT OF VIEW

STEFAN VÖGELE, CHRISTOPHER BALL, WILHELM KUCKSHINRICHS FORSCHUNGSZENTRUM JÜLICH, INSTITUTE OF ENERGY AND CLIMATE RESEARCH SYSTEMS ANALYSIS AND TECHNOLOGY EVALUATION (IEK-STE)

Mitglied der Helmholtz-Gemeinschaft

- 1. Introduction
- 2. Method
- 3. Results
- 4. Conclusions



BACKGROUND

German Government targets: 1 million e-vehicles by 2020 & 6 million by 2030

Policies supporting e-mobility:

- Purchase grant
- Financial support for charging infrastructure
- Tax incentives

→ Slow diffusion of e-vehicles in Germany

INTRODUCTION

Hypothesis: A successful deployment of e-mobility requires support by a broad range of actors (including car-manufactures, government, car- users and utilities) whereas each actor has its specific interests

→ Multi-Actor Multi-Criteria Problem

Research questions:

- Which factors underlie an actor's decision in favour of a particular technology?
- What has to change to effect a shift from one technology to another?
- How is a stakeholder's decision influenced by the position of other stakeholders?

Multi-Actor Multi-Criteria Approach

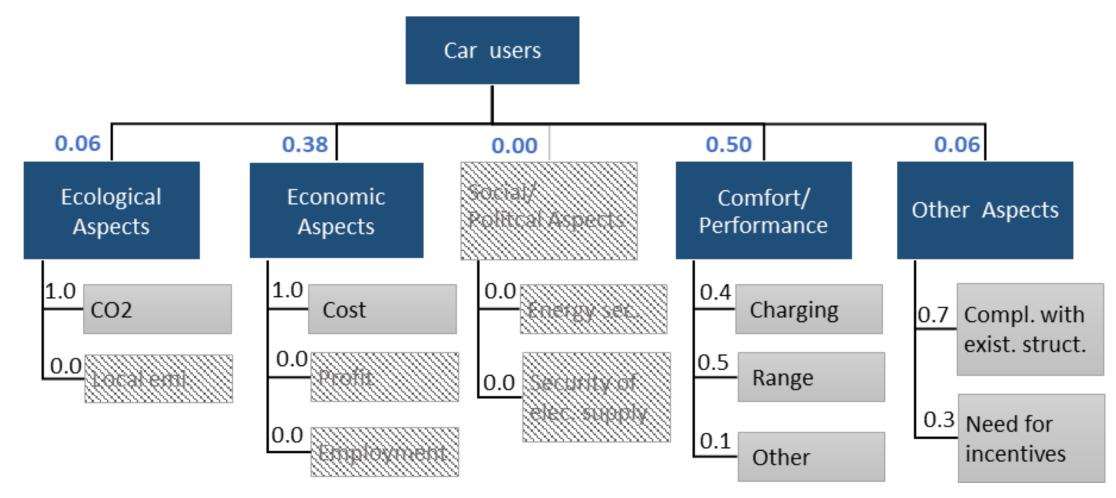
Assumptions:

- 4 actors: car users, government, car manufacturers and electricity suppliers, who each must choose one mobility option
- 3 Mobility options:
 - Internal combustion engine vehicles (ICE)
 - ➢ Hybrid vehicles (HEV)
 - ➤ E-vehicles (EV)

MCDA - Steps

- (1) Identification of factors being relevant for decision of actors
- (2) Specification of actor-specific weighting factors
- (3) Assignment of values to characteristics of technology options
- (4) Normalization [0-1]
- (5) Weighting and summing up \rightarrow Selection of the option with best performance

Extension: Externalities as additional factors



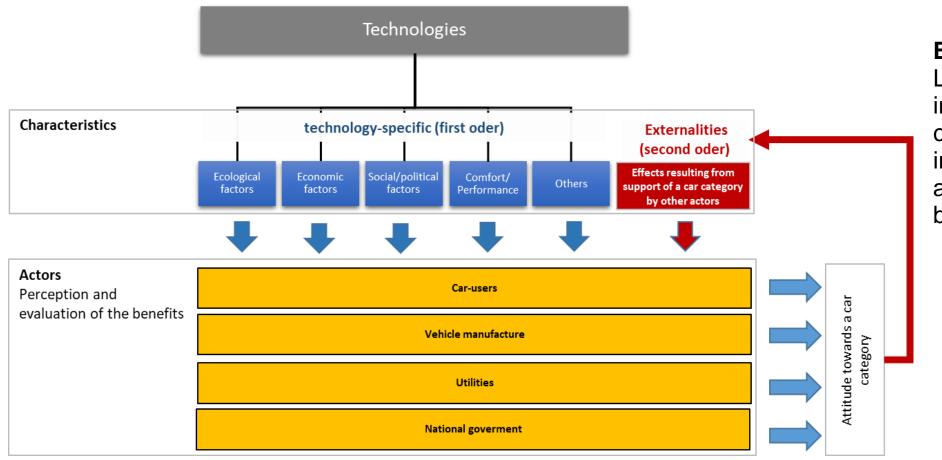
2. METHOD - FACTORS BEING RELEVANT FOR ACTORS

Characteristics	Car user	Car manufactures	Electricity suppliers	Government		
ECOLOGICAL FACTORS						
CO ₂ emissions	Х	Х	Х	Х		
Local emissions				Х		
ECONOMIC FACTORS						
Cost of ownership	Х	Х				
Profit		Х	Х	Х		
Employment		Х		Х		
SOCIAL/POLITICAL FACTORS						
Impact on import dependency			Х	Х		
Impact on the security of electricity supply			Х	Х		
Comfort/Performance						
Charging time	Х	Х	Х			
Range	Х	Х	Х			
Other	Х					
OTHER FACTORS						
Complementarity with existing structures	Х	Х	Х	Х		
Need for incentives	Х	Х	Х	Х		

2. METHOD – WEIGHTINGS (CAR-USERS)

Source: Own compilation based on [Esch, 2016]

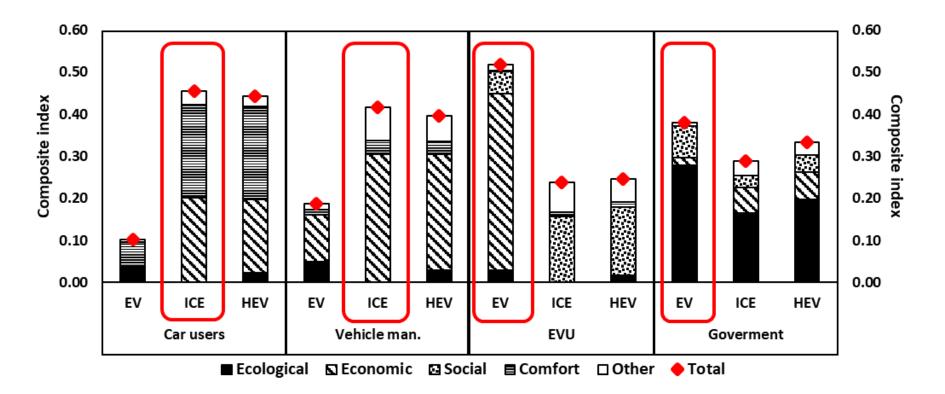
2. METHOD CHARACTERISTICS OF OPTIONS


Characteristics	unit	Electric Car	Car with internal combustion	Hybrid Car
ECOLOGICAL FACTORS				
CO ₂ emissions*	-	63**	100	78
Local emissions*	-	0	100	79
ECONOMIC FACTORS				
Cost of ownership*	-	107	100	101
Profit*	-	50	100	90
Employment*	-	26	100	104
SOCIAL/POLITICAL FACTORS				
Impact on import dependency	-	very low	very high	high
Impact on the security of electricity supply	-	moderate	very low	very low
Comfort/Performance				
Charging time	-	very bad	very good	very good
Range	km	350	900	1000
Other ²		Good	very good	very good
OTHER FACTORS				
Complementarity with existing structures		very low	very good	very good
Need for incentives		very high	very low	low

Remarks: * Standardized ICE = 100, ** Calculated based on data on average CO2-emissions/kWh in Germany, sources: Own compilation based on [Esch, 2016, NISSAN Center Europe, 2018, Toyota Deutschland, 2018]

2. METHOD – EXTENSION

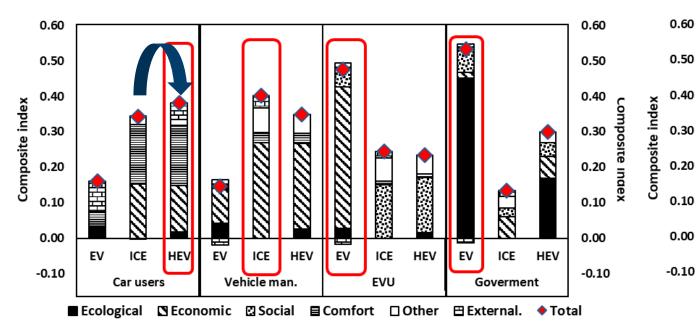
Indirect effects and externalities can change certain stakeholders' decisions


Externalities:

Learning effect, reduction in cost, increases in comfort and improvements in charging infrastructure as side effects/ancillary benefits

3. RESULTS AND SENSITIVITY ANALYSIS

Without externalities



Government and electricity suppliers prefer e-vehicles; manufacturers and car users prefer ICE

3. RESULTS AND SENSITIVITY ANALYSIS

Round 1: Including externalities: i.e. government & supplier support e-vehicles → impacts on carusers (e.g. improvement in recharging infrastr.)

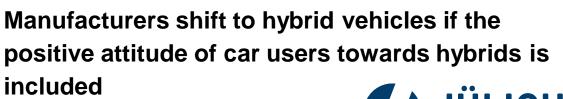
The inclusion of externalities causes car users to shift from ICEs to hybrid vehicles

Round 2: Second Order externalities included

HEV

EV

ICE


Vehicle man.

EV

Ecological

ICE

Car users

HEV

Economic Social Comfort Other

EV

ICE

EVU

No.

HEV

ICE

Goverment

🗄 External. 🔶 Total

EV

0.60

0.50

0.40

0.30

0.20

0.10

0.00

-0.10

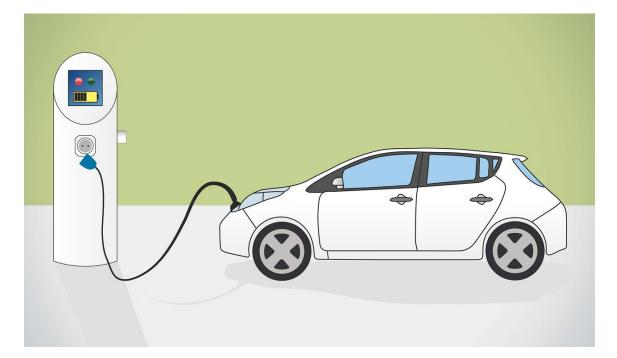
HEV

Composite index

SENSITIVITY ANALYSIS

What would cause manufacturers to switch to e-vehicles?

Scenario "EV": CO ₂ emissions 73 g/100 km*											Scenario "Variant: EV with zero CO ₂ emissions"															
		ECONOMIC FACTORS (0: not relevant, 10: very important)											╈	ECONOMIC FACTORS (0: not relevant, 10: very important)												
			1	2	3	4	5	6	7	8	9	10				0	1	2	3	4	5	6	7	8	9	10
-	0	ICE	ICE	ICE	ICE	ICE	ICE	ICE	ICE	ICE	ICE	ICE		-	0	ICE										
: not	1	HV	HV	HV	нν	HV	ΗV	HV	ICE	ICE	ICE	ICE		i o i	1	ICE										
ë t	2	HV	HV	HV	нν	HV	ΗV	HV	HV	HV	HV	HV		ë t	2	EV	EV	EV	EV	EV	EV	HV	ΗV	ICE	ICE	ICE
l 🕄 d	3	HV	HV	HV	нν	HV	ΗV	HV	HV	HV	HV	ΗV		ORS	3	EV										
r TOF	4	EV	EV	EV	нν	HV	ΗV	HV	HV	HV	HV	HV		r70	4	EV										
EA(5	EV	EV	EV	EV	EV	EV	EV	HV	HV	HV	ΗV		Ver FA	5	EV										
Įξ ä	6	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV		₹ä	6	EV										
	7	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV		ਰ ਵੱ	7	EV										
195	8	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV		2 5	8	EV										
ECO	9	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV		rele,	9	EV										
	10	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV			10	EV										


Remarks: * Calculated based on data on average g CO₂-emissions/kWh in Germany, values in red indicates results from default setting

- Higher weighting for ecological factors and/or improvement of CO₂ footprint of electricity used in e-vehicles
- Harmonization of profit margins among all vehicles

SENSITIVITY ANALYSIS

What would cause users to switch to e-vehicles?

Lower importance of comfort and performance: e-vehicles do better

Source: www.smarter-fahren.de/elektroautos-laden)

More importance for ecological factors (i.e. thanks to greater awareness)

Source: www.spiegel.de/fotostrecke/fridays-for-future-die-bewegung-in-bildern-fotostrecke-169421-3.html

CONCLUSIONS

- It is important to consider co-benefits associated with policies to understand the position of each decision maker
- Car users and manufacturers show the most resistance to e-vehicles, but this resistance can be reduced through externalities
- It is possible to cause car users to switch to hybrid vehicles, a switch to e-vehicles seems to be difficult
- Profitability is the biggest hurdle for manufacturers to go for e-vehicles
- Next steps: Consideration of different groups of car users

