Energy Poverty and Energy Inequality in Japan: A Direct Measurement Approach

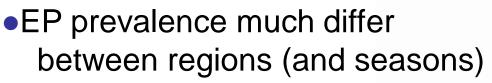
Shinichiro Okushima

University of Tsukuba

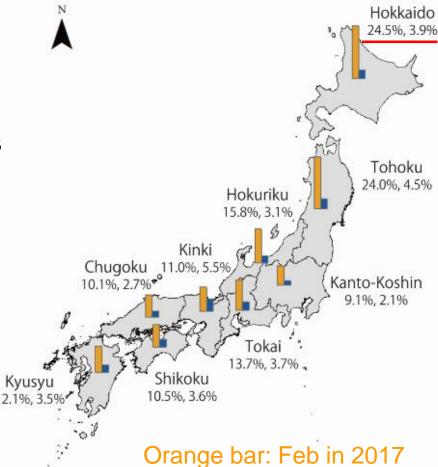
E-mail: okushima@sk.tsukuba.ac.jp

- Show the current situation of energy poverty (EP) in Japan using the traditional EP measure
- Consider the importance of climatic factors behind EP regional differences
- Present a new approach to measuring EP in calorific values and compare the results
- Suggest interesting results using the new measure
 the two obstacles to an inclusive low-carbon
 energy transition in Japan

Review: concept and definition of EP


- Energy poverty can be defined <u>conceptually</u> as *e.g.*
 - the inability to attain a socially and materially necessitated level of domestic energy services (Bouzarovski and Petrova, 2015)
- <u>Practically</u>, e.g., the traditional 10% measure defines energy poverty households as those that spend more than 10% of their income on energy expenses (electricity, gas, and heating oil(=kerosene))

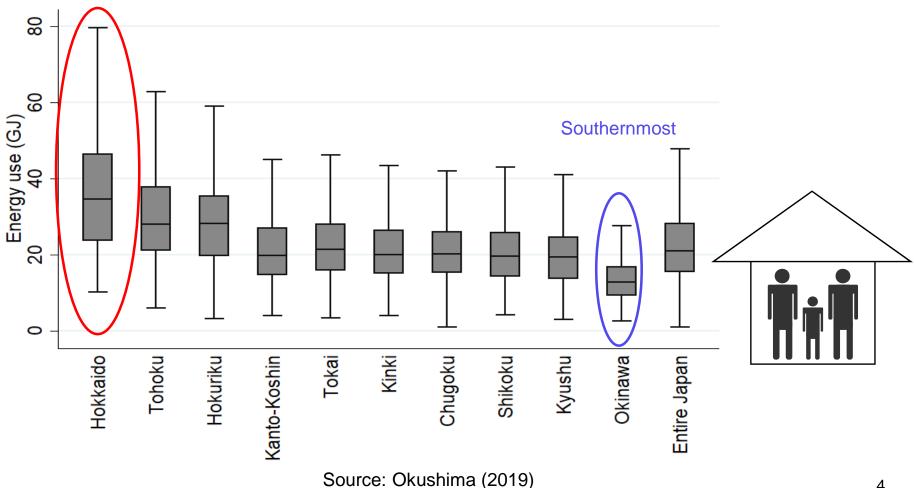
Energy poverty:


 $\frac{Energy \ expenses \ (electricity, gas, and \ heating \ oil)}{Income} > 0.1$

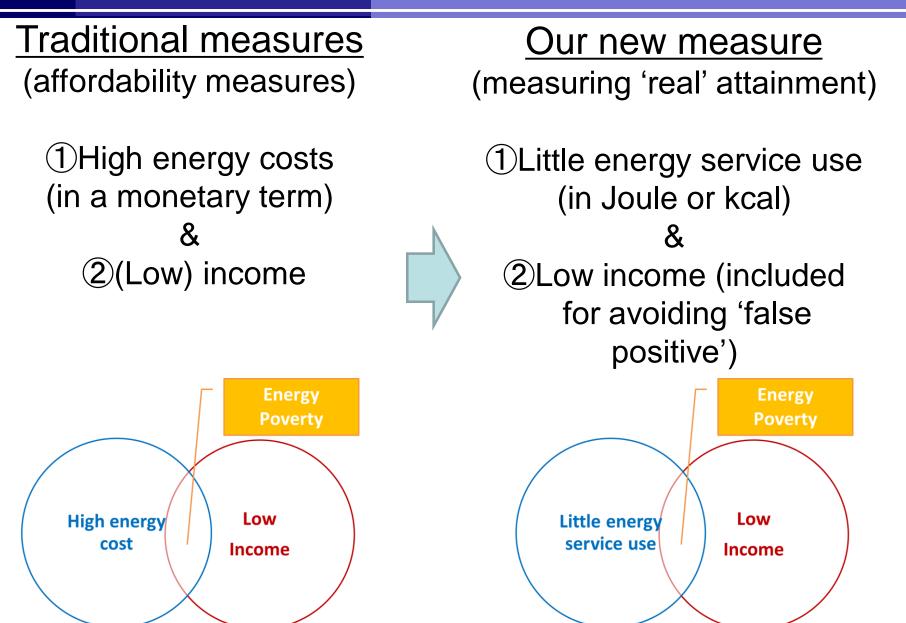
(Gauging 'energy affordability')

Energy poverty from the regional perspective

- Higher in the northern regions such as Hokkaido (in the subarctic zone), 25% in winter
- Higher in winter due to heating needs especially in the northernmost regions (very cold winter & much snow)
- In Okinawa (in the subtropical zone), EP is more serious in summer, 12%

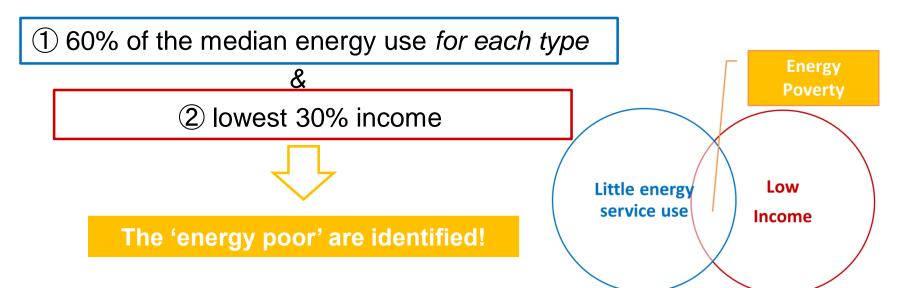


Climate differences have a (crucial) impact on EP evaluation →But, in my view, never taking climatic differences seriously in the context of EP measurement


Inequality of domestic energy service use

• Figure shows distribution of domestic energy service use (in GJ) \rightarrow Higher in the northern regions due to winter heating needs

Northernmost



A new approach: measuring EP in calorific values

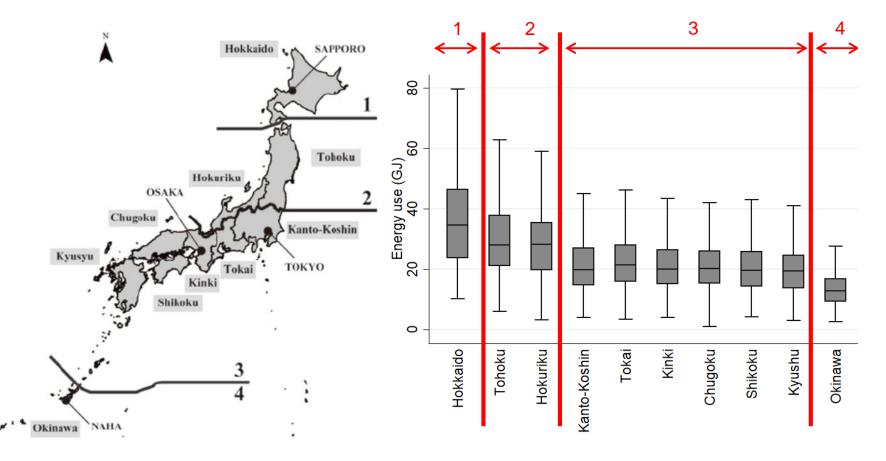
Poverty identification & aggregation

- Energy poverty can be measured by the two steps (Sen, 1997)
 - <u>"Identification"</u> (who are the poor?) defining the poverty thresholds

- <u>"Aggregation</u>" how are the poverty characteristics of different people to be combined into an aggregate measure for the whole society?
 - using a headcount ratio H (the poor q to the total population n)

H = q / n (The energy poverty rate in the society)

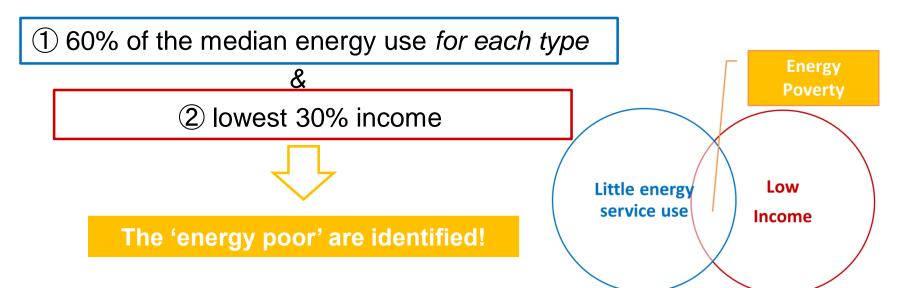
For the poverty identification (= defining poverty thresholds),


subclassified all households (*n*=9,505) into <u>**16 types**</u> here (4 Climate × 2 Socio-demographic × 2 dwelling types)

(Having elderly members or not) (Detached or apartment)

3 most important determinants to household energy service use !

	Detached house		Apartments	
	Vulnerable type	Others	Vulnerable type	Others
1. Hokkaido	Type 1	Type 2	Type 3	Type 4
2. Tohoku Hokuriku	Type 5	Туре б	Type 7	Type 8
3. Kanto-Koshin Tokai Kinki Chugoku Shikoku Kyushu	Type 9	Type 10	Type 11	Type 12
4. Okinawa	Type 13	Type 14	Type 15	Type 16


E.g., 4 climate types are classified considering climate similarity

Source: Okushima (2019)

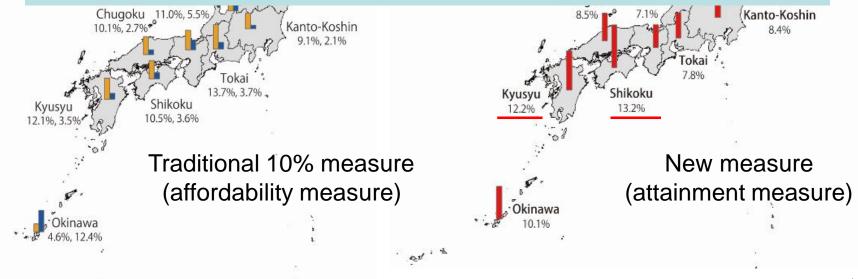
Poverty identification & aggregation

- Energy poverty can be measured by the two steps (Sen, 1997)
 - <u>"Identification"</u> (who are the poor?) defining the poverty thresholds

- <u>"Aggregation</u>" how are the poverty characteristics of different people to be combined into an aggregate measure for the whole society?
 - using a headcount ratio H (the poor q to the total population n)

H = q / n (The energy poverty rate in the society)

Energy poverty prevalence by the new measure


- Evaluating EP from the viewpoint of 'insufficient energy service use',
 - Milder EP in the northern regions

0.0 . 2

More serious EP in the western regions (possibility of 'hidden' EP)

Possibly, different kinds of 'energy poverty' being measured \rightarrow A combined evaluation should provide more detailed information on the 'real' situation of energy poverty or energy vulnerability

Additional (interesting) results using the new measure

Government now considers higher 'carbon pricing' as a low-carbon ET policy

BUT,

EP are significantly vulnerable to higher 'carbon pricing' Two issues which stand in the way

- 1 Higher carbon intensity of EP
- 2 Energy poverty premium (EPP)

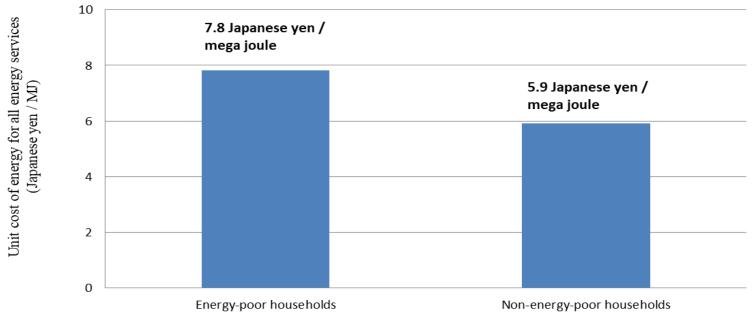
Higher carbon intensity of EP households

EP households: <u>Higher carbon intensity</u> than non-EP

Higher carbon pricing should places more burdens on EP!

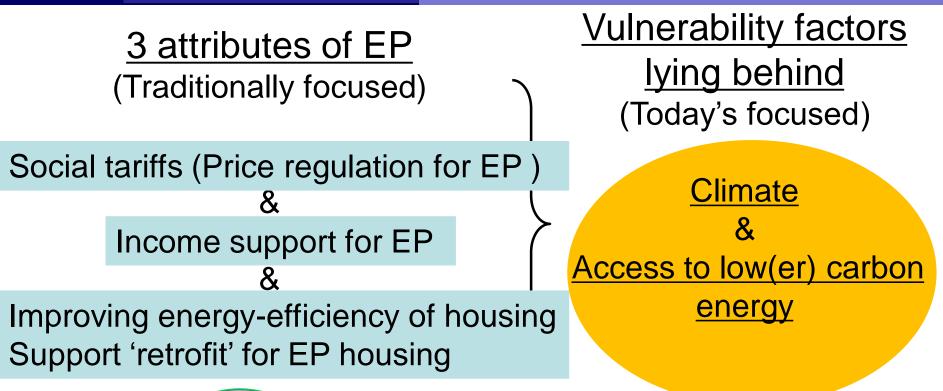
Energy poor have 'less' access to lower-carbon energy (Okushima, 2019; Chapman and Okushima, 2018)

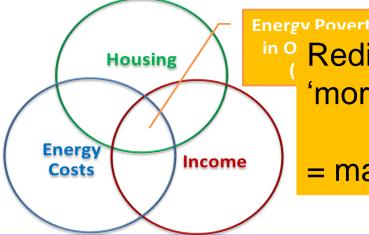
Energy poverty premium (EPP)


•An <u>'energy poverty premium'</u> exists in Japan

 \Leftrightarrow EP pay more for energy services (per MJ) than non-poor

⇔the poor pay more for essential goods and services (by unit cost)


Possible reasons: differences in energy infrastructure, transport costs, etc.


EP are facing higher prices of ES than the more affluent people! \rightarrow Implication for the 'energy justice' issue in Japan

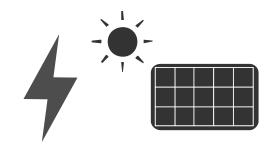
Source: Okushima (2019)

Policy for an inclusive, just energy transition

Redistribute the benefit of renewables 'more progressively' to EP

= make RE more accessible to EP one s control or responsibility)

Policy suggestion: solar energy to EP


Ensuring the access to solar energy for EP households

One option: providing low- or no-cost solar panels for EP

BUT,

EP's houses are unfitted for solar PV deployment in many cases...

 Another option: providing low- or no-cost electricity generated from community solar or publicly-owned solar facilities

Policy suggestion: biomass energy to EP

- Promoting other renewables in line with the 'local context' is also a fruitful option for a just low-carbon energy transition
- One possible approach: promoting the use of wood stoves, replacing kerosene stoves, especially in the northern regions
 Replacing kerosene (imported fuels) by firewood (regional unutilized renewables)
 - Ensuring the access to low-carbon energy for EP, in terms of winter heating

Thank you very much for your kind attention !

<u>Note</u>: All the figures in this presentation were calculated by myself or ourselves, not official ones. Hence, the presenter assumes full responsibility for them.

<u>References</u>:

Boardman, B. Fixing fuel poverty: challenges and solutions. London: Earthscan; 2010.

Bouzarovski, S. and Petrova, S.A. "Global perspective on domestic energy deprivation: overcoming the energy poverty-fuel poverty binary," *Energy Research and Social Science*, 10, 2015, pp. 31-40.

Chapman, A. and Okushima, S. "Engendering an inclusive low-carbon energy transition in Japan: considering the perspectives and awareness of the energy poor," *USAEE/IAEE Working Paper*, No. 18-372, December 2018 (http://doi.org/10.2139/ssrn.3301084).

Okushima, S. "Measuring energy poverty in Japan, 2004-2013," *Energy Policy*, 98, 2016, pp. 557-564 (https://doi.org/10.1016/j.enpol.2016.09.005).

Okushima, S. "Gauging energy poverty: A multidimensional approach," *Energy*, 137, 2017, pp. 1159-1166 (https://doi.org/10.1016/j.energy.2017.05.137).

Okushima, S. "Understanding Regional Energy Poverty in Japan: A Direct Measurement Approach," *Energy and Buildings* (SI: Energy Poverty Varieties), 193, 2019, pp. 174-184 (https://doi.org/10.1016/j.enbuild.2019.03.043).

Sen, A., 1997. On Economic Inequality: Enlarged Edition. Clarendon Press, Oxford.