Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Methods to reduce computing times of linear energy system optimization models

IAEE 2019, Ljubljana

Yvonne Scholz, Karl Kiên Cao, Manuel Wetzel, Kai von Krbek DLR – German Aerospace Center, Department of Energy Systems Analysis

Daniel Rehfeldt, Thorsten Koch

Zuse Institut Berlin / TU Berlin

A PROJECT BY

Approach I: Model-based computing time reduction

",Low Hanging Fruits"

Source code improvement

- Selection of measures (also useful to decrease memory need):
 - Input data should not differ much in its order of magnitude
 - Index order influences computing time
 - Useful, but not necessarily faster
 - Assignment statements with a different set order can be faster
 - It can be better to place large index sets at the beginning
 - Use of "option kill", e.g. for long time-series input parameters saves memory
 - Abundant use of "Dollar Control over the Domain of Definition"
 - Consistent (and limited) use of defined variables
 - Avoid the consideration of technologies providing the same service at the same costs
 - Consider alternative formulation of model constraints (dense vs. sparse)
- Helpful references: "Speeding up GAMS Execution Time" by Bruce A. McCarl <u>https://www.gams.com/mccarl/speed.pdf</u>

Approach I: Model-based computing time reduction

Presented speed-up approaches

Evaluation methodology

Evaluation: Overview

Model name	REMix
Author (Institution)	German Aerospace Center (DLR)
Model type	Linear programming
	minimization of total system costs
	economic dispatch / optimal dc power flow with expansion of storage and transmission capacities
Sectoral focus	Electricity
Geographical focus	Germany
Spatial resolution	488 nodes
Analyzed year (scenario)	2030
Temporal resolution	8760 time steps (hourly)

Solver	Commercial
Algorithm	Barrier
Cross-over	Disabled
Max. parallel	16
barrier threads	
Scaling	Aggressive

Results

Results: Spatial aggregation

BEAM-ME

Performance

Results: Spatial aggregation

Performance

Accuracy

Results: Spatial aggregation

- Speed-up factor: ≈5

- Accuracy error mainly < 10 % (grids: ≈20%)

Results: Temporal zooming

Accuracy

Performance

Results: Temporal zooming

Speed-up factor: >10 reachableAccuracy error of up to 35 %

Yvonne Scholz (DLR)

Approach II: Hardware-based computing time reduction ...

By Nikitarama - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40358482

10-11

... and solver-based computing time reduction belong together!

Rows and columns can be permuted without changing the optimization problem

17

Annotation II

- Annotation pre-structures the optimization problem
- The GAMS interface permutes the matrix and builds model blocks for PIPS-IPM
- The new solver PIPS-IPM can solve the problem parallelized on a supercomputer

18

Results

The new PIPS solver

Commercial Solvers:

- Poor scaling
- Time strongly depends on selected solver

PIPS:

- New version is much faster (note that original PIPS was developed for different problems!)
- ► Scaling is almost linear
- Still in beta state! Issues:
 - parallel preprocessing
 - not suitable for all LPs

19

Conclusions

Conclusions

- Model based speed-up strategies
 - Slicing / Aggregation / Heuristics / Decomposition
 - Computing time reduction up to factor 10
- Solver based speed-up strategies
 - ESM Annotation \rightarrow GAMS interface \rightarrow new PIPS solver \rightarrow HPC
 - Computing time reduction can reach > factor 100
 - New PIPS solver still in beta state

• BEAM-ME Best Practice Guide

- publication planned by the end of 2019
- To be notified, subscribe to the mailing list:

beamme-news@dlr.de

subject: "subscribe"

Project BEAM-ME

Supported by:

Thank you!

Contact yvonne.scholz@dlr.de

A PROJECT BY

