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Case of the “Clean European Energy Package”

Christian von Hirschhausen
based on joint research with colleagues mentioned ...

Wwip NZASTI] BERLIN



Energiewende — the structure

Ch. 1: Introduction

Part I: The Origins of the ,,Energy Transformation*

* Ch. 2: German Energy and Climate Policies: An
Historical Overview
* Ch. 3: The Transformation of the German Coal
Sector from 1950 to 2017 — A Historical
Overview
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« Ch. 4: Greenhouse Gas Emission Reductions and the the Context of the European
Phasing-out of Coal in Germany Low-carbon Tranformation
« Ch. 55 Nuclear power: Effect_s _of plant closures on - Ch. 10: The European Context: Generation
electricity markets and remaining challenges - Ch. 11: The European Context: Infrastructure
* Ch. 6: Renewable energy sources as the cornerstone « Ch. 12:Future International Coordination within
of the German energiewende Europe
« Ch. 7: Energy efficiency: A key challenge of the * Ch. 13: Modeling the Low-Carbon
energiewende N S Transformation in Europe - Developing
 Ch. 8: The role of electricity transmission infrastructure Paths for the European Energy System
* Ch. 9: Sector Coupling — A Techno-Economic until 2050

Introduction and Application to Germany

Ch. 14: Assessment, Perspectives, and Conclusions: 15 Theses

TU Berlin - WIP Regulierung und Finanzierung der Stromnetzes
Thorsten Beckers -1- Eberbacher Klostergesprache, 4. September 2012
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Forecast, foresight, and scenario development

(Ansari, Holz, and Tosun, 2018)

*» Forecasting
% Making a qualified statement or calculation of some future event or condition

based on the results of study and analysis of data

% Foresight
% Areframing process that involves “the exploitation of insight(s) to create a
state of being prepared for thinking, seeing, and acting in the future.”
(Peppler, 2015)

o, : Slmple Complex
< Scenario development Snuatm
as an application of
Short Time
foreS]ght analyS]S (}':'182":2 CIassigg:l:\l:r::te '(‘.‘?::shingm
years)
% “Bound the range of

plausible alternative

Longer Multi : .
- ple Scenarios Generation
9 Time Frame Alternative Futures Foresi b
ght Quadrant Crunching
futures.” Pherson (2015) (310 Analysis | it

years)

from Pherson (2015)

Fossil Fuels, Global Energy, and International Policy NI BERLIN
Ansari, Holz, Tosun | 6 /6 / 2018 o



Linking global and regional energy scenarios
Ex: SET-Nav Scenarios 2050 “translated” into regional ones

Scenario development as an application of foresight analysis
The object of scenario development is not to cover all possibilities, but to circumscribe
them, or as Pherson (2015) puts it, to “bound the range of plausible alternative futures.”

Plenty of applications:
Industry: Shell, IEA, ... scenario exercises
Academic organziations: MIT, Stanford Energy Modeling Forum, etc.

How to develop scenarios: a step-by-step

approach (based on Schoemaker, 1995)

1. Defining the scope (i.e. time-frame and
subject)

2. ldentifying major stakeholders

3. Identifying basic trends

4. ldentifying key uncertainties (what

events/trends whose outcomes are

uncertain will significantly affect the

issues we are concerned with)

Constructing initial scenario themes.

Developing learning scenarios

(i.e. give more or less weight to some

themes across scenarios depending on

their relevance)

7.  Clustering scenarios into four, rather
extreme groups

8. Check internal cluster consistency and

derive multiple-driver scenarios from

them

Identifying Research Needs

(do further research and inform

ourselves about these uncertainties and

trends

10. Developing quantitative models
(re-examine internal inconsistencies and
assess whether certain interactions
should be formalized via quantitative
modelling.)

oo

©
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Scnearios can not be separated from models

Assumptions on:

~ competition:
Cournot vs. perfect competition vs. ...

~ trade:
perfect competition vs. national
perspective

~ sector linkage:
partial vs. general equilibrium;
macro-energy linkage

~ Different electricity sector modeling:
Methodologies:
~ optimization vs. simulation,
~ different objective functions,
~ different time perspectives, etc.

Probabilistic

Deterministic

Uncertainty
Intraperiod Interperiod
constraints constraints
Single s
2
/o Probabilistic
Transshipment
Model - LFJII?;GB':' l)ﬁo;“ - * _—
1 SFE | Kelman "ﬂ"p
MOde}_,.--"" Balllo ’J. Deterministic
AC > e/ L 9# ilnterperiod
Model / SIIIOCS ﬂ# Links
: Single
- . . Node
e Wei &
Smeers Transshipment
Model
DC
wﬂ“ Model
Ferrero
AC
Model

Intraperiod
Constraints

Transmission
Network

Source: Ventosa (2005)

“Interperiod
Constraints
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Policy choices are important ...

~ National policies are diverse
~ US — NOPR on “grid stability” (capacity payments for coal and nuclear power)
~ OPEC-countries on fuel subsidies
~ Sweden on CO, pricing in transportation

~ Reqgional policies are transaction-cost intensive

~ Cross-country and “seams” issues” are complex

~ Legally binding
~ Politically consistent?
~ Global policies are important, but difficult to implement
~ Taxation, subsidies, etc.
~ Carbon pricing
~ Issue linking, e.g. with fiscal, social, other policies




... and technology is not different

Past. Emergence of technologies nationally specific, e.g. gas turbine,
nuclear power, solar energy

Present: uncertainty about existing technologies and costs

Future: technical and economic availability
~ Fossil technologies, carbon dioxide removal technologies (CDR), etc.

~ “low-carbon-clean” technologies, e.g. nuclear power, renewables, etc.
~ Auxiliary technologies, e.g. storage




Call for Papers — Economics of Energy & Environmental Policy

Economics of Energy & Environmental Policy (EEEP), published by the International Association for
Energy Economics (IAEE), focuses on policy issues involving energy and environmental economics. EEEP
is a peer-reviewed, multidisciplinary publication which provides a scholarly and research-based, yet easily
readable and accessible source of information on contemporary economic thinking and analysis of energy
and environmental policy issues.

The publication encourages dialogue between business, government
and academics and improves the knowledge base for energy and NEW!
environmental policy formation and decision-making. EEEP produces Journal Metrics:
original papers, policy notes, organized symposia on specific policy A
issues, feature articles, book reviews and commentaries on current
energy and environmental policy issues and studies. The editors
are Prof. Christian von Hirschhausen (Technical University
Berlin, Germany), Prof. Valerie Karplus (MIT, Sloan School,
US) and Prof. Juan Rosellon (CIDE, Mexico).

INTERNATIONAL Contact either:
ASSOCIATION for Pao-Yu Oei, EEEP Managing Editor
ENERGY ECONOMICS pyo@uwip.tu-berlin.de

Impact Factor (2015):

5-Year Irmact Factor:

WWW.IAEE.ORG

David Williams, IAEE Executive Director
iaee@iaee.org
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EEEP Symposium: -[Elé"e’?,i‘%‘gﬁ’*;
y p IAEE QNERGYECONéfMICS

“Energy and Climate Scenarios “ WWWIAEE ORG

Christian von Hirschhausen, Isabell Braunger, Chris Hauenstein, Pao-Yu
Oei, Ben Wealer: Energy and Climate Scenarios — An Introduction

Sergeij Paltsev (MIT): Energy Scenarios: The Value and Limits of Scenario
Analysis

Chandra Bushan (CSI India): Decarbonization in India — Current Status and
Perspectives

Klaus Mohn (University of Stavanger): A Review of IEA’s World Energy
Outlook

Christian Breyer / Dmitri Bogdanov (Lappeenranta University, Finland):
Scenarios for a Lower-Carbon World

Pedro Crespo del Granado, Gustav Resch: set-nav pathways Paper

Konstantin Loffler, Thorsten Burandt, Pao-Yu Oei, Claudia Kemfert: (Berlin)
Scenarios using GENeSYS-MOD - An Overview

SUBJECTS COVERED

(Objectives and instruments
in climate policy

Energy market design

Infrastructure regulation and
regulatory policy

Competition policy
Emizzion trading

Policy of intermational negotiations and
agreements on environmental issues

Energy, environment and
developing countries

Institutions for palicy formation
and enforcement

Sustainability of energy systems
Energy systems in city planning
Demand response tools

Energy sacurity

Renewable ensmgy policy
Technology and innovation policy
Energy efficiency policy

Matural resources policy for enengy
extractive industres

Transportation policy
Taxation and financial policy Bsues

Private-public partnership
in energy industries
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What model for scnenario-based scientific policy advice?
Edenhofer and Korwasch (2012)

Policymakers * Policymakers

Ends Means cmplementatinn

Ends

Figure 1: The decisionist . 7= = s =~
Science '| Science Policymakers

Means klmplementation

=, Figure 2: The technocratic model.

——
- -

Evaluation

T

/v Option A -
Policymakers
— Option B

Ends OMeans K\A Option C j Implementation

O

¢ blic Deb :ﬁji::-

Figure 4: The process of the scientific policy advice as suggested by the pragmatic-enlightened model (PEM
- J_d -




In realtiy, the ,,scenariomakers and modelers* are part of the
policy process, not separated from it

‘ Policymakers

‘. Implementation |

Endsﬁ

\sMeans ) Option C

Figure 4: The process of the scientific policy advice as suggested by the pragmatic-enlightened model (PEM).
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Yet another model: “Partisan model® or “lron triangle“
Midttun and Baumgartner (1986): “Negotiating energy futures*

~ In reality, thee is no strict separation between ,,scenario-model
development® and ,,politics/policy

Refererring to discussion in the 1970s:

... energy forecasts have been used for partisan purposes. ...
iIndustrial, political, and administrative interests compete for cognitive
and methodological hegemony ...(p. 219) [“Iron triangle”]

“scientific negotiation of energy futures”

... “point to the filters of professional orientation that give every
forecast an inherent cognitive bias”

-15 -



The ,,“lron Triangle® in the PEM-Model

Training and
theorizing in
academic

(Public Debate)

institutions
| Problem Any Evaluation
~Data collection g? Planning and
and model economic
building in decision making
statistical offices in Mlnlstnes tion
= = — "

Figure 4: The process of the scientific policy advice as suggested by the pragmatic-enlightened model (PEM ).
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The “Clean” Energy Package, focus on electricity
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Development of Power Generation
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Source: Loffler, et al. (2018)

Technology

Photovoltaics
Wind Offshore
Wind Onshore
Biomass [CCTS]
Biomass

Gas [Biogas]
Hydro
Geothermal
Ocean

Nuclear

Oil

Gas [Natural Gas]
Lignite

Coal

T. Burandt, K. Loffler
-19-

Groningen, 11.06.2018

Emission Pathways Towards a Low-Carbon Energy System for Europe



Regional Power Generation Profiles 2015 and 2050

ST | 2050 . Technology
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T. Burandt, K. Loffler 20 Groningen, 11.06.2018
- - Emission Pathways Towards a Low-Carbon Energy System for Europe



Energy/climate change mitigation scenarios:
Techno/supply-side bias

~ Nuclear not an option (see slides on nuclear).

~ Fossil/Natural gas not an option due to carbon dioxide emissions + methane leakage —
not better than coal (e.g. Howarth 2019).

~ CCTS does not work and can economically not compete with RES (see slides below).
(Gas + CCTS has further more the issue of methane leakages + no 100% CO,-
emission reduction possible with CCTS.)

~ Carbon dioxide removal (CDR): BECCTS, DACCTS, ... (not to speak of Solar Radiation
Management (SRM)) (i.a. Anderson and Peters 2016; Bednar, Obersteiner, and
Wagner 2019; IPCC 2018; Lawrence et al. 2018; Minx et al. 2018; Shue 2017).

Technical feasibility not proven (individual technologies, as well as envisioned rapid
scale-up), uncertainty about effective net CO2 removal and total CO2 removal
potential.

High risk, uncertainty, and ignorance of possible adverse side-effects (possibly
breaching other planetary boundaries and counteracting the achievement of SDGSs).

No business case / no policy enabling large-scale implementation.
~ RES: “clean”, but also issues (resources, land, social acceptance, availability, ...).
= Considering demand-side mitigation

T. Burandt, K. Loffler 21 Groningen, 11.06.2018

Emission Pathways Towards a Low-Carbon Energy System for Europe



Installed capacity of nuclear plants in EU-28 given the scheduled shutdowns and end of life dates
In gigawatts
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Source: own illustration based on Ben Wealer et al (2018): Nuclear Power Reactors Worldwide - Technology Developments, Diffusion Patterns, and Country-by-Country Analysis of Implementation {1951-2017). DIW Berlin Data Documentation 93
(available online).
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The “nuclear power paradox“: Newbuilt and retrofit of nuclear power
plants in the EU 2016 Reference Scenario
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Source: EC (2016)
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Francois Lévéque (2012):
»1he nuclear industry is the child of science and warfare*
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A Brief History § =
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Nuclear Power Reactors Worldwide —
Technology Developments, Diffusion
Patterns, and Country-by-Country
Analysis of Implementation (1951-2017)

Ben Wealer, Simon Bauer, Nicolas Landry, Hannah Sei and Christian von Hirschhausen
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Davis (2012; JEP, p. 11):,,70 years later ...*

lable 3
Levelized Cost Comparison for Electricity Generation

Levelized cost in cents per RWh

Source Nuclear Coal Natural gas
MIT (2009) baseline 8.7 6.5 6.7
Updated construction costs 10.4 7.0 6.9
Updated construction costs and fuel prices 10.5 7.4 5.2
With carbon tax of $25 per ton CO, 10.5 9.6 6.2

Source: These calculations follow MIT (2009) except where indicated in the row headings.

Noles: All costs are reported in 2010 cents per kilowatt hour. Row 1 reports the base case estimates
reported in MIT (2009), table 1. The cost estimates reported in row 2 incorporate updated construction
cost estimates from U.S. Department of Energy (2010). Row 3, in addition, updates fuel prices to reflect
the most recent available prices for uranium, coal, and natural gas reported in U.S. DOE (2011a).
Finally, row 4 continues to incorporate updated construction costs and fuel prices and, in addition, adds
a carbon tax of $25 per ton of carbon dioxide.
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Looking back ...
...Nn0-one ever pretended nuclear was ,,economic* ...

MIT (2003): The Future of Nuclear Power

“In deregulated markets, nuclear power is not now cost competitive with coal and natural gas.”
(p. 3)
University of Chicago (2004):

“A case can be made that the nuclear industry will start near the bottom of its learning rate when
new nuclear construction occurs. (p. 4-1) ... “The nuclear LCOE for the most favorable case, $47
per MWh, is close but still above the highest coal cost of $41 per MWh and gas cost of $45 per
MWHh.” (p. 5-1)

Parsons/Joskow (EEEP 2012)
“may be one day ...”
D’haeseleer (2013): Synthesis on the Economics of Nuclear Energy

“Nuclear new build is highly capital intensive and currently not cheap, ... it is up to the nuclear
sector itself to demonstrate on the ground that cost-effective construction is possible.” (p. 3)

Davis, L.W. (2012): Prospects for Nuclear Power. Journal of Economic Perspectives (26, 49-66))

“These external costs are in addition to substantial private costs. In 1942, with a shoestring
budget in an abandoned squash court at the University of Chicago, Enrico Fermi demonstrated

that electricity could be generated using a self-sustaining nuclear reaction. Seventy vears
later the industry is still trying to demonstrate how this can be scaled up
cheaply enough to compete with coal and natural gas.* (p. 63)
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Results of the Monte Carlo simulation for the net present value
of an exemplaric nuclear plant with 1000 megawatts
Probability density in percent
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Global perspective on potential ,,nuclear newbies*
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Notes: Countries not colored are considered as non-nuclear. Nuclear group: Argentina, Armenia,
Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Finland, France, Germany, Hungary, India,
Iran, Japan, Korea, Rep.., Mexico, Netherlands, Pakistan, Romania, Russian Federation, Slovak Repub-
lic, Slovenia, South Africa, Spain, Sweden, Switzerland, Ukraine, United Kingdom, and United States.
Nuclear newbies group: Albania, Algeria, Bangladesh, Belarus, Bolivia, Cambodia, Ecuador, Egypt,
Indonesia, Jordan, Kazakhstan, Kenya, Dem. People’s Republic Of Korea, Kuwait, Lao PDR, Malaysia,
Poland, Saudi Arabia, Sri Lanka, Sudan, Thailand, Turkey, Uganda, and Vietnam.

Sources: Wealer et al. (2018), World Nuclear Association (2018a), World Nuclear Association (2018b), and PRIS (2018).
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... driven by everything but economics (,,nuclear diplomacy®)

Predicted probability of choosing the strategy “to go nuclear”, at each level of democratic
eXp(L(Nuclea.r Newbie))

freedom holding CO, and GDP at their means:  ;(Nuclear Newbie) _ v . v .
1+exp(L(1\ uclear N(:wb]c))+exp(L(l\ucl(:a,r N(:wbm))
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Notes: Left (right) plot indicates each level of the Freedom House (POLITY ™[V PROJECT) indicator.

» The predicted probability of being in the Nuclear Newbies group (j=1) increases with decreasing
levels of democratic freedom for both measures of democratic development.

» Totalitarian countries tend to invest in future nuclear power development.

TU Berlin - WIP “Nuclear Diplomacy” - State of the Art of Nuclear Power Plants Exports and some Econometric Analysis
Is, an, cvh, bw = 35 = 16M IAEE European Conference, 27" of August 2019



The “Clean” Energy Package, focus on electricity
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Agenda

1) Introduction: EEEP “Symposium on Scenarios and Modeling“
2) The role of scenarios and modeling in the policy process

3) An example: The “Clean“ Energy Package

4) Conclusions
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Conclusions

Climate and energy scenario are a controversial topic

Discussion currently focussing on the “technology-supply-side*

How to assess plausibility of behavioral changes etc.? (“singing and dancing”)
Considering demand-side mitigation

~ Demand-side measures not systematically represented in scenarios. Research focuses
on supply-side (Creutzig et al. 2018).

~ Increasing energy efficiency is good, but not enough.
~ Have to start thinking of considering behavioral changes and societal transformations.

~ Need to engage in “messy business of socioeconomic scenario building” (Beck and
Mahony 2018, 4).

Transparency and open-data-open-code is important

... and lots of work to do...
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