

Markets for New Energy Storage Technologies

Prof. Dr. Georg Erdmann Former Chair of ,, Energy Systems", Berlin University of Technology

16th IAEE European Conference, Ljubliana, 27 August 2019

2

Energy Storage Systems in the Narrow Sense [Source: FVEE 2018, p. 25]

Storage technology	Capacity [kWh/t]	Load [MW]	Efficiency	Range
Pumped Hydropower		1 - 500	80%	day - month
Air pressure	2 kWh/m³	10 - 300	40% - 70%	hour - ½ day
Lead acid	40		85%	day - month
Li-Ion	~160	0.002 - 20	>95%	¼ hour - days
Na-Ion	20 - 30	0.002 - 200	80% - 90%	¼ hour - days
NaS	110	> 0,05	85%	day
Redox-Flow	25	0.01 - 10	75%	day - month
Water	10 - 50	0.001 -10	50% - 90%	day - year
High temperature (liquid salt,)	50 - 150	5 - 300	>95%	hour - day
Latent heat storage	50 - 75	0.3 - 6	90% - 95%	hour – weeks
Thermochemical	120 - 250	0.01 - 1	100%	hour - months
Hydrogen / methane	>10'000	0.001 - 100	25% - 65%	day - years

Levelized Cost of Batteries [Example]

Assumed cost of the storage system	6'000€
Rated size of the storage system	10 kWh
Depth of discharge (incl. average degradation over lifetime)	80%
Number of storage cycles over lifetime	7'000
Energy efficiency of storage system	95%

Levelized Cost Of Storage (LCOS): The case of electric batteries

6.000 € / (10 kWh * 0.8 depth * 7'000 cycles * 0.95 efficiency) = 11.28 Ct/kWh or 113 €/MWh

Negative Day-ahead Prices [Germany; own calculations from EPEX data]

Year		lumber of hours with price ≤ 0	Minimal price [Euro/MWh]	
2010		12	-20.45	
2011		16	-38.82	
Linenticipated regulation		56	-221.99	
Unanticipated regulation	n D	64	-100.93	
wholesale prices 2013 2016 2017 2018 2019 (till 21.08.)		63	-65.03	
		126	-79.94	
		97	-130.09	
		104	-83.06	
		119	-76.01	
		126	-80.69	

Economics of Energy Storage Investments

- On energy only power markets, merchant investments into energy storage systems rely on the (expected) daily price spreads, cumulated over a year
- Different power markets must be considered (forward, day-ahead; intraday, ...)

Example for Electricity Price Components

Germany 2016	Power purchase from the grid	Auto generation	Power purchase in "local context"
		Euro/MWh	
Grid fee	18.00 - 30.00		18.00 - 30.00
REN levy	63.54	22.24	
Electricity tax	20.50		
Concession fee	1.1 – 23.90		1.1 - 23.90
CHP levy	4.45		4.45
§ 19 StromNEV	3.78		3.78
Offshore levy	0.40		0.40
Total	86.77 – 121.57	22.24 - 42.74	23.73 – 83.03

Strategies for Solving the Storage Problem

- Solution 1: Selective exemptions from electricity fees, levies and taxes for certain storage applications → high regulatory complexity
- Solution 2: Shift from energy related grid fees to load related grid fees (eventually including levies) → new regulatory approach, but not sufficient
- Solution 3: Replacing the (remaining) electricity levies through CO₂ taxes (This would imply in Germany additional 40 Euro/t CO₂, if all domestic CO₂ emissions would be included) → politically difficult
- Solution 4: Companies in a monopolistic position may convince regulators to transfer storage system costs to their customers → storage systems as grid asset

Promising Strategies for Storage Investments

- Storage systems with low investment expenditures (or with major components already in place: Power-to-Heat; fleet of electric vehicles; Demand-side-Management, ...)
- Operate storage systems beyond the wholesale electricity market (decentralized installations at final consumers, ...)
- Introducing capacity payments for (certain) wholesale storage systems?
- Financing storage systems through monopolistic companies (grid operators)

Problems of Decentralized Storage Systems

- How should Balancing Responsible Parties (BRPs) reflect retail customers with significant storage capacities?
- Should electricity be provided to these customers through a synthetic profile (as today)?
- Management of decentralized storage systems in the interest of grid stability (Remark: certainly not with area wide power prices)
- What are the managing costs?
- At what conditions a customer may accept external interventions into its own storage system?

Promising Strategies for Storage Investments

- Storage systems with low investment expenditures (or with major components already in place: Power-to-Heat; fleet of electric vehicles; Demand-side-Management, ...)
- Operate storage systems beyond the wholesale electricity market (decentralized installations at final consumers, ...)
- Introducing capacity payments for (certain) wholesale storage systems?
- Financing storage systems through monopolistic companies (grid operators)

Promising Strategies for Storage Investments

- Storage systems with low investment expenditures (or with major components already in place: Power-to-Heat; fleet of electric vehicles; Demand-side-Management, ...)
- Operate storage systems beyond the wholesale electricity market (decentralized installations at final consumers, ...)
- Introducing capacity payments for (certain) wholesale storage systems?
- Financing storage systems through monopolistic companies (grid operators)

Conclusions of my Presentation

- It is rather challenging to develop promising business cases for electric storage systems
 - High investment costs

31

- Cannibalization effects
- Central dispatch of decentralized storage
- Capacity markets are no sustainable solution ...
- ... but the monopolistic position of grid industries
- Attention: Capital intensive storage systems (such as Power-to-Gas) cause an economic pressure towards base-load electricity generation

Thank You

Tel: +41 (0)76 446 50 34 georg.erdmann@tu-berlin.de Zweifel • Praktiknjo • Erdmann

I Energy Economics

Springer Texts in Business and Economics

Peter Zweifel Aaron Praktiknjo Georg Erdmann

Energy Economics

Theory and Applications

