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Outline of today’s talk
We have a fair bit of ground to cover in 40 minutes...

The price elasticity of energy demand
I The idea has is not to challenge the theory of demand, or extend it in any way, in fact I am very

simplistic in how I ‘attack’ this aspect of the project:

ln(Qit) = µit + βPitln(Pit) + βYitln(Yit) + uit

Type-herterogeneity
I What do I mean by type heterogeneity there are two (sequential) aspects to how I approach this:

I Heterogeneity In a first pass ‘simple’ estimation round I do not want to impose common
coefficients e.g. to allow: βPi 6= βPj, ∀{i, j}, {i, j} ∈ I, i 6= j (ignoring the t subscript for
simplicity).

I Type identification (reduction) in my world is about isolating panel ‘synchronicity’ in marginal
products e.g. the idea that βPi ≈ βPj, ∀{t} ∈ T, {i, j} ∈ I, i 6= j.



The econometric specification and its ‘challenges’
A production function with time-varying (in-)efficiency

ln(Qit) = µit + βPitln(Pit) + βYitln(Yit) + uit, u ∼ NID(0, σ2
u) (1a)

µit = µit−1 + eit, e1it ∼ NID(0, σ2
e1i) (1b)

βPit = βPit−1 + e2t, e2it ∼ NID(0, σ2
e2i) (1c)

βYit = βYit−1 + e3t, e3it ∼ NID(0, σ2
e3i) (1d)

I Panel formed of OECD 17 countries, taken from Adeyemi et al. (2010) - a little dated, but a valid test
case nonetheless.

Challenges...
I Can we estimate a time-varying coefficent accurately in modest panel dimensions?

I If there is an i dimension to address (i) can it be handled with accuracy, and (ii) can a well performing
dimension reduction strategy be devised?



A preview of the main results
Since we have too much ground to cover in 15 minutes...

...this is clearly a thought in progress..., but...
I Show that a panel modified STSM performs well under ‘normal’ conditions.

I Clarify that OLS-FE lacks precision compared with panel STSM

I I further show that a-priori unknown, complex, ‘clubbing’ patterns can be uncovered without a high
computational overhead, and with respectable levels of accuracy



Orientation: Defining and interpreting ‘accuracy’
Coverage, significance and relative accuracy scores.

‘Coverage’ of the true parameter in the confidence set:
I Shows if the true parameter contained within the 95% confidence interval∗ of the estimated coefficient

e.g. β̂LOW < β < β̂UP.

‘Significance’ of estimated coefficients:
I Shows if the estimated coefficients are deemed significant at the 95% level, noting that (by design) all

terms are significant e.g. sgn(β̂LOW) = sgn(β̂UP).

I Coverage and significance should be considered simultaneously, since accuracy in one without the
other implies erroneous policy implications.

Relative accuracy scores (RAS):
I RAS scores are based on averages of dummy variables that take the value one for the estimator when it

provides the most accurate point estimate of the true coefficient, and zero if some other estimator was
more accurate i.e. it is defined relative to the other models it is competing against.

I RAS can be defined for individual coefficients, as well as overall model fit.



The initial data generating process
A simulated panel with unobserved common time trend

Here I outline the data gnerating process that I will use in establishing the efficacy of the panel STSM model
for the purpose of recovering time varying latent trends.

To ensure generality we will for now denote the two exogenous variables by x1it and x2it rather then pit and yit,
similarly we will denote the left hand side variable by yit, rather than qit.

1. Generate exogenous variables: {x1it, x2it} ∼ N(0, 1)
2. Specify coefficient values: {β1, β2} = 1
3. Generate unobserved trend: αt = φαt−1 + νit , with φ = 1 and ν ∼ N(0, 1)
4. Construct systematic component of observed data: y∗it = αt + β1x1it + β2x2it

5. Generate non-systematic component of observed data: uit ∼ N(0, 1)
6. Construct observed data: yit = y∗it + uit



Moving to a world with varying coefficients
A simulated panel with both unobserved common trend & time varying coefficients

Now I shall move towards a more demanding data generating process in which the coefficients are varying
over time

1. Generate exogenous variables: {x1it, x2it} ∼ N(0, 1)
2. Specify coefficient values: β1t = φβ1t−1 + v1it;β2t = φβ2t−1 + v2it with {v1it, v2it} ∼ N(0, 1)
3. Generate unobserved trend: αt = φαt−1 + νit , with φ = 1 and νit ∼ N(0, 1)
4. Construct systematic component of observed data: y∗it = αt + β1tx1it + β2tx2it

5. Generate non-systematic component of observed data: uit ∼ N(0, 1)
6. Construct observed data: yit = y∗it + uit

The above steps will be repeated for combinations in {N, T} = {5, 10, 15, 20, 25, 30}, and for M = 1000
monte-carlo replications.



Two approaches to estimation
Here the OLS-FE model becomes visibly limited in its potential

Traditional fixed effects estimation:

yit = αt + β1x1it + β2x2it + uit (2)

We could in theory interact the x variables with time trends here also, though this may become cumbersome
quite quickly

Panel models in state space form:

yit = αt + β1tx1it + β2tx2it + uit (3a)

αt = φαt−1 + vit (3b)

β1t = φβ1t−1 + v1it (3c)

β2t = φβ2t−1 + v2it (3d)



That is one case only - let’s multiply!!

By now we have some sense that in one type of scenario (data generating process or d.g.p.), and with one set
of random data, it is not inconceivable that the TVP model might be ‘at least no worse’ than FE models. I do
not give the nonparametric model further consideration in this study.

We are now going to do a more thorough and fairer comparison with multiple replications and random draws
on the data.

I The d.g.p. contiunes to reflect the world we have explored so far, in which key model parameters are in
fact constant over time (favoring the FE model), but in which there is a time-varying intercept:

Y∗
it = αt + β1X1it + β2X2it; Yit = Y∗

it + uit; uit ∼ N(0, 1)

β1 = 1; β2 = 1; X1it ∼ N(0, 1); X2it ∼ N(0, 1)

αt = αt−1 + e0t; M = 1000

N = 5, 10, 15, 20, 25, 30; T = 5, 10, 15, 20, 25, 30



Simulation results: Y∗it = αt + β1X1it + β2X2it

TVP model is generally no worse in inference than OLS-FE, irrespective of sample sizes, and much butter in terms of
relative accuracy in all cases.

FE Coverage and significance: αt

Length of time series T
N 5 10 15 20 25 30
5 0.93 0.91 0.88 0.85 0.72 0.77
10 0.87 0.94 0.92 0.91 0.88 0.86
15 0.71 0.85 0.90 0.92 0.92 0.90
20 0.76 0.88 0.92 0.94 0.94 0.93
25 0.80 0.90 0.94 0.95 0.95 0.94
30 0.83 0.93 0.95 0.96 0.89 0.96

TVP Coverage and significance: αt

Length of time series T
N 5 10 15 20 25 30
5 0.55 0.57 0.58 0.60 0.60 0.62
10 0.79 0.85 0.86 0.87 0.86 0.87
15 0.89 0.91 0.90 0.90 0.91 0.91
20 0.92 0.93 0.93 0.93 0.92 0.92
25 0.93 0.94 0.94 0.94 0.93 0.94
30 0.94 0.95 0.94 0.94 0.94 0.94

FE Relative accuracy score: αt

Length of time series T
N 5 10 15 20 25 30
5 0.32 0.30 0.28 0.25 0.25 0.23
10 0.36 0.36 0.33 0.32 0.30 0.30
15 0.33 0.33 0.34 0.32 0.32 0.31
20 0.34 0.35 0.34 0.34 0.33 0.32
25 0.33 0.35 0.34 0.34 0.34 0.33
30 0.33 0.34 0.35 0.34 0.33 0.33

TVP Relative accuracy score: αt

Length of time series T
N 5 10 15 20 25 30
5 0.68 0.70 0.72 0.75 0.75 0.77
10 0.64 0.64 0.67 0.68 0.70 0.70
15 0.67 0.67 0.66 0.68 0.68 0.69
20 0.66 0.65 0.66 0.66 0.67 0.68
25 0.67 0.65 0.66 0.66 0.66 0.67
30 0.67 0.66 0.65 0.66 0.67 0.67



Now lets complicate things...
Let us introduce more complex d.g.p. with full TVP’s

With some reliable comparisons that we can trust the TVP framework at least as much as we can trust the
‘usual’ panel techniques we apply, we now turn attention towards some more interesting cases that can only be
considered using a TVP approach.

I The d.g.p. reflects a more complilcated world in which we have key model parameters that are
themselves varying over time (thereby favoring the FE model), and in which we continue to include a
time-varying intercept:

Y∗
it = αt + β1tX1it + β2tX2it; Yit = Y∗

it + uit; uit ∼ N(0, 1)

β1t = β1t−1 + e1t; β2t = β2t−1 + e2t; X1it ∼ N(0, 1); X2it ∼ N(0, 1)

αt = αt−1 + e0t; M = 1000

N = 5, 10, 15, 20, 25, 30; T = 5, 10, 15, 20, 25, 30

In the next slide we will not show relative accuracy scores, but those results should be implicit.



Simulation results: Y∗it = αt + β1tX1it + β2tX2it

By this stage we should be expecting the FE approach to falter. What is remarkable however, is the striking performance of
TVP models in modest panel dimensions. With N = 15 and T = 15 we observe 75% ‘accuracy’ in our estimates for all parts
of the model. By the time we hit still modest dimensions of N = 30 and T = 30 we are pushing close to 90% accuracy!!

FE Coverage and significance: αt

Length of time series T
N 5 10 15 20 25 30
5 0.94 0.91 0.88 0.85 0.80 0.77
10 0.87 0.94 0.92 0.91 0.88 0.86
15 0.71 0.85 0.90 0.92 0.92 0.90
20 0.75 0.88 0.92 0.94 0.94 0.92
25 0.80 0.90 0.94 0.95 0.95 0.94
30 0.83 0.92 0.95 0.95 0.96 0.96

TVP Coverage and significance: αt

Length of time series T
N 5 10 15 20 25 30
5 0.55 0.57 0.58 0.59 0.60 0.62
10 0.79 0.85 0.86 0.87 0.87 0.87
15 0.89 0.91 0.90 0.90 0.91 0.91
20 0.92 0.93 0.93 0.93 0.92 0.92
25 0.93 0.94 0.94 0.94 0.93 0.94
30 0.94 0.95 0.95 0.94 0.94 0.94

FE Coverage and significance: β2t

Length of time series T
N 5 10 15 20 25 30
5 0.89 0.94 0.94 0.94 0.94 0.93
10 0.93 0.91 0.89 0.86 0.85 0.83
15 0.89 0.84 0.78 0.72 0.67 0.63
20 0.81 0.67 0.57 0.51 0.47 0.43
25 0.75 0.57 0.48 0.42 0.37 0.34
30 0.73 0.57 0.48 0.42 0.38 0.35

TVP Coverage and significance: β2t

Length of time series T
N 5 10 15 20 25 30
5 0.57 0.63 0.65 0.66 0.66 0.68
10 0.81 0.84 0.83 0.82 0.80 0.81
15 0.87 0.83 0.80 0.78 0.76 0.76
20 0.86 0.81 0.83 0.84 0.86 0.87
25 0.85 0.83 0.86 0.87 0.89 0.90
30 0.81 0.79 0.81 0.84 0.85 0.86



The simulation is all well and good but...
What about the differences between panel members

In practice there will be considerable differences between certain panel members, enough to require handling during the
estimation stage.

I The simulation exercises presented above were somewhat dismissive of this important heterogeneity.

I This was a simplifying assumption that facilitated meaningful and objective evaluation of the estimators, yet this
might reasonably be considered a strong restriction nonetheless.

I The maintained assumption in much empirical research, is that coefficients are common to all panel members. This
assumption can be relaxed, and a yet more general panel representation might be given by:

yit = α
(κj)
t + β

(κk)
1t x1it + β

(κm)
2t x2it + ηit (4)

I κj, κk and κm are identifier functions used to denote membership/clustering of coefficients into clubs with j ∈ J,
k ∈ K and m ∈ M, and {J,K,M} ≤ N.

I It is possible to identify club membership using a relatively simple detection mechanism



A D.G.P. for a panel with ‘synchronous types’
Common time-varying coefficients for subsets of panel members

Now we wish to allocate the N panel members into coefficient clubs. We do this by first creating K1 and K2 which are (in
practice unobserved) club membership indicators:

K1 =

{
1 ∀ N < 0.5N
0 Otherwise

K2 =

{
1 ∀ N ∈ 0.25N, ..., 0.75N
0 Otherwise

We can then simulate a dataset with clubbed coefficients through the following relationship:

Y∗
it = K1α1t + (1− K1)α2t + K2β1tX1it + (1− K2)β2tX1it; Yit = Y∗

it + uit; uit ∼ N(0, 1)

With all other assumptions remaining similar to the previous D.G.P.’s presented. In this manner, we arrive at four latent club
assignments to be ‘detected’ during the estimation process.

Objectives of the second stage of the study:
I To correctly assign each of the N panel members into their true coefficient club(s)

I To obtain precise estimates of the true coefficients



MC results: Y∗it = K̂1α1t + (1 − K̂1)α2t + K̂2β1tX1it + (1 − K̂2)β2tX1it
Monte-Carlo simulation results with M = 200∗

TVP Coverage and significance: α1t

Length of time series T
N 5 10 15 20 25
20 0.422 0.756 0.831 0.867 0.853
40 0.548 0.829 0.854 0.854 0.840
60 0.588 0.835 0.829 0.835 0.850
80 0.622 0.848 0.880 0.859 0.869
100 0.641 0.843 0.858 0.866 0.850

TVP Coverage and significance: α2t

Length of time series T
N 5 10 15 20 25
20 0.430 0.768 0.826 0.854 0.846
40 0.565 0.820 0.873 0.852 0.854
60 0.614 0.828 0.836 0.837 0.851
80 0.630 0.846 0.879 0.852 0.873
100 0.651 0.856 0.864 0.875 0.849

TVP Coverage and significance: β1t

Length of time series T
N 5 10 15 20 25
20 0.509 0.782 0.862 0.896 0.901
40 0.560 0.851 0.877 0.912 0.926
60 0.645 0.850 0.900 0.921 0.933
80 0.653 0.852 0.918 0.926 0.937
100 0.653 0.852 0.912 0.937 0.934

TVP Coverage and significance: β2t

Length of time series T
N 5 10 15 20 25
20 0.513 0.785 0.867 0.910 0.912
40 0.540 0.826 0.901 0.892 0.922
60 0.618 0.835 0.904 0.923 0.928
80 0.621 0.850 0.913 0.918 0.939
100 0.618 0.856 0.912 0.925 0.936

∗ Note, in the tables above, the coverage and signficance scores for α1t and α2t underestimate their true values due to a
minor programing typo.



Sample simulation run, N = 20 and T = 10
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Sample simulation run, N = 100 and T = 25
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How many alpha’s are there? Answer:< N
A lot of heterogeneity, and incidental pattern of slow convergence between 1970-1990



How many price elasticities? Answer:>1
Perhaps most interesting here is that one varies over time and the other does not.



How many income elasticities? Answer:>price
Price policy groups 6= income policy groups



Closing remarks (1/2)
Lessons, limitations and next steps

Lessons learned:
I A panel modified variant of a multivariate STSM is quite effective at estimating time varying model

features and at least as good as OLS-FE for ‘simple’ cases of unobserved trend estimation

I Standard inference techniques hold good ‘power’, even in small samples

I Can accurately assign panel members into latent coefficient clubs, leaving open the possibility of more
intricate policy coordination related insights

Limitations of the work done so far:
I The application considered needs to more more closely aligned to the original studiy

I Still need to vary simulation parameters to alleviate some of the key concerns e.g. starting parameters
for convergence etc.

Next steps for the work:
I Consider different and more challenging (though still realistic) d.g.p.’s



Closing remarks (1/2)
Lessons, limitations and next steps

... and get more firmly into the production function based applications ...



Thanks for listening!

Any questions/comments are warmly welcomed.
david.broadstock@polyu.edu.hk


	Thanks!

