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OVERVIEW

= |ntroduction: Deterministic power procurement problem

= Model design: Incorporate the risks associated with power

= Application to use case: Generation expansion probl (GEP)
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INTRODUCTION 1

= Main objective: Procuring required
power at minimum possible cost

min f(x) s.t ZPl-t(x) >d;, VteT ‘_ﬁ
xeX : Optimization
l
Model Variables 2 lli

f  Objective: System costs "
pemana response

Dh t joltaic

P;t Power available from i-th energy asset at point

of timeteT
d¢ Demand at point of time t € T -
. . Wind Turb rr %
X Endogenous variables (Installed capacity, , ’
shares used in the strategy, ...) “ HE S | it Tt
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INTRODUCTION 2

= Deterministic approaches can lead to procurement plans which are infeasible or
overly expensive (Beraldi et al., 2017)

Uncertainty in power output is addressed to be a major problem (Hemmati et al.,
2017)

= Task of supplying predefined load in economic matteris challenging but a key factor
in energy planning problems (Monishaa et al., 2013)

“The best managers are the ones who cope best with their uncertainty” (H. Markowitz,
Interview in: https://www.thiscomplexworld.com/nl/put-eggs-basket-interview-harry-markowitz/)
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CONSTRUCTION

INCLUDING RISK OF SUPPLY SHORTAGES

FROM DETERMINISTIC TO STOCHASTIC

L] The. . : Stochastic paradigm:
unpredictabillity (...in Consider the
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CONSTRUCTION

INCLUDING RISK OF SUPPLY SHORTAGES

METHODOLOGY: RELIABILITY BASED DESIGN OPTIMIZATION (RBDO)

= RBDO to model the ,,safety-under-uncertainty" aspect (Lopez and Beck, 2012)

= RBDO has a twofold goal (Geletu et al., 2013): System performance and system
reliability

= Elaborate arisk-based inspection of the objective

Deterministic min f(x) st Z P,(x) >d,, VteT
i

Design xeX RBDO via

probability

chance
constraints

Stochastic min E[f(x)] st Pr Zﬁit(x) =die = X vVt €T
Design x€X -
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CALIBRATION
THE ENERGY MODEL: INCLUDING RES

WIND & SOLAR POWER
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CALIBRATION
THE ENERGY MODEL: INCLUDING RES

WIND & SOLAR POWER
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CALIBRATION

UNDERLYING PROBABILISTIC DISTRIBUTIONS

FROM GAUSSIAN TO ADAPTED PDF'’S
constraints are incorporated:

Energy assets
Assumption of Gaussian
WING distributions (Garifi et al. (2018),
Solar Irradiance I, speed Hemmati et al. (2017), Huang et
al. (2018),...)
|
: Expo Log- ! Weibull
BDEE &8 Q
|
|
ol : Compare & validate
A (M0) ATV different models
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VALIDATION

EVALUATION OF PREDICTIVE PROPERTIES 1

= Model properties depend on the estimated reliable power

= Consider the subproblem of the maximum supply s; of an existing energy park in @
use case

= “Fundamental building block™ of the model

= Which model M1- M4 performs best in predicting the maximum reliable power supply
from an energy park in comparison to the benchmark model MO assuming Gaussian
distributions?

maxs; sS.t. Pr {z P > St} = X
S¢=20 -
l
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VALIDATION

EVALUATION OF PREDICTIVE PROPERTIES 2

= Model accuracy in terms of the CV(RMSE) (Aman et al., 2014)

p; Predicted value

1 n(p — 0,)? o; Observed value
CV(RMSE) = 5 =1 ,'; l o Mean of observed
values

n Sample size

= Compare the sample means, bootstrapping of Nn=10000 simulations and comparing
the distribution of the CV(RMSE)’'s mean for the benchmark and the other models
(a=5%)

Ho: Wp, 2 Ky Hypy, < My,
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VALIDATION

EVALUATION OF PREDICTIVE PROPERTIES 3

= Observe different behaviour according to ex-ante specified level of reliability

= For lower levels of reliability, no difference compared to the benchmark model

= For higher values x = 0.8 models (M1) - (M4) outperform benchmark model
— Ml
— M2
o P7C — w3 significantly
- — R outperform
g benchmark model
7 p<o .
> of Gaussian
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INTERMEZZO: SOLVING THE STOCHASTIC OPTIMIZAZION PROBLEM

THE SAMPLE APPROACH

Solution for generic probabilistic distributions via
1. Sample approach (Calafiore and Campi 2005, 2006; Calafiore 2010)

2. Sample and discard algorithm (Campi and Garatti 2011)

. gcnel)I}E[f(x)] st. Pr(X; Pie(x) = dp) = ¥

. gcnei)I}E[f(x)] s.t. Zingj)(x) =dy, j=1,..,N whenever N is

Nelggle]
“adequately”

ed

e Solve with standard methods
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APPLICATION

USE CASE: GENERATION EXPANSION PROBLEM

= Find capacities k; to supply given demand d; for every point in the planning horizon
and a given level of reliability x in an economic way (capacity budgeting problem)

= Costs are measured by CAPEX: the amount per installed capacity (wind: & =
1500 €/,,,solar: &, ~ 2300 ®/,,,) (Cucchiella et al., 2015)

= Whatis the influence of the system reliability on the system costs?

ng&z K; §; st Pr {z P (x;) = dt} > X VvteT
. i

l
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APPLICATION
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CONCLUSION

= Extension of deterministic procurement problem to consider risks associated with
supply shortages

= Adapted pdf’'s to estimate maximum reliable supply

= Flexible tool to support managerial decisions, applied in a use case
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APPLICATION

MODEL VALIDATION

= A posterioi assessment of the use case

= Sample N constraints and compute empirical probability of constraint validation (s.t.
empirical probability is close €=0.01 to true value with confidence greater than 95% (Calafiore and Campi, 2005))

= At low levels of reliability sample & discard algorithm introduces conservatism
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THE SAMPLE APPROACH

= Fix 2 parameters: (1) reliability parameter 0<x<1 and (2) confidence parameter 0<B<]

= Then choose the sample size (Calafiore and Campi 2005), sample size refined in
(Calafiore and Campi 2005)
n

N> =08~

= Then with probability not smaller than 1- 8, the sampled program returns an optimal
solution which is robustly feasible, i.e.

Pr(X;Pp=d;) =x

1
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