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OVERVIEW
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 Introduction:  Deterministic power procurement problem 

 Model design: Incorporate the risks associated with power supply

 Application to use case: Generation expansion problem (GEP)

Construction
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extension of 
deterministi
c model

• Application 
of RBDO
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•Parameters 
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Series

Validation

•Consider 
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maximum 
reliable 
supply

•Backtest 
different 
models

Application to a 
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based 
extension of 
the GEP
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INTRODUCTION 1

 Main objective: Procuring required 

power at minimum possible cost
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min
𝑥∈𝑋

𝑓 𝑥 s.t. 

𝑖

𝑃𝑖𝑡 𝑥 ≥ 𝑑𝑡, ∀𝑡 ∈ 𝑇

Model Variables

f Objective: System costs

Pit Power available from i-th energy asset at point 
of time t ∈ T

dt Demand at point of time t ∈ T

x Endogenous variables (Installed capacity, 
shares used in the strategy, ...)

Source: Nojavan et al., (2019)



INTRODUCTION 2

 Deterministic approaches can lead to procurement plans which are infeasible or 
overly expensive (Beraldi et al., 2017)

 Uncertainty in power output is addressed to be a major problem (Hemmati et al., 
2017)

 Task of supplying predefined load in economic matter is challenging but a key factor 
in energy planning problems (Monishaa et al., 2013)

 “The best managers are the ones who cope best with their uncertainty” (H. Markowitz, 
Interview in: https://www.thiscomplexworld.com/nl/put-eggs-basket-interview-harry-markowitz/)
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Determinist
ic

Stochastic

INCLUDING RISK OF SUPPLY SHORTAGES
FROM DETERMINISTIC TO STOCHASTIC

“[...] the 

unpredictability (…in 

the power output…) is 

not considered. ”

(Delarue et. al., 2011)

Stochastic paradigm: 

Consider the 

aleatoric risk of the 

power supply
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From deterministic to 
stochastic

CONSTRUCTION



INCLUDING RISK OF SUPPLY SHORTAGES
METHODOLOGY: RELIABILITY BASED DESIGN OPTIMIZATION (RBDO)

 RBDO to model the „safety-under-uncertainty“ aspect (Lopez and Beck, 2012)

 RBDO has a twofold goal (Geletu et al., 2013): System performance and system 

reliability

 Elaborate a risk-based inspection of the objective

IAEE 2019 6

CONSTRUCTION

RBDO  via 
probability 
chance 
constraints

min
𝑥∈𝑋

𝑓 𝑥 s.t. 

𝑖

𝑃𝑖𝑡 𝑥 ≥ 𝑑𝑡 , ∀𝑡 ∈ 𝑇

min
𝑥∈𝑋

𝐸 ሚ𝑓 𝑥 s.t. Pr 

𝑖

෨𝑃𝑖𝑡(𝑥) ≥ 𝑑𝑡 ≥ χ, ∀𝑡 ∈ 𝑇

Deterministic

Design

Stochastic

Design



THE ENERGY MODEL: INCLUDING RES 
WIND & SOLAR POWER
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𝑣𝑡
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THE ENERGY MODEL: INCLUDING RES 
WIND & SOLAR POWER
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𝐼𝑡 𝑣 𝐼

𝑃
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UNDERLYING PROBABILISTIC DISTRIBUTIONS
FROM GAUSSIAN TO ADAPTED PDF’S

In problems where reliability 

constraints are incorporated:  

Assumption of Gaussian 

distributions (Garifi et al. (2018), 

Hemmati et al. (2017), Huang et 

al. (2018),...)
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Compare & validate 
different models

CALIBRATION

Energy assets

Solar Irradiance 𝐼𝑡

Gaussi
an 

(M0)

Weibull 
(M1)

Expo 
nential 

(M2)

Beta     
(M3)

Log-
Normal 

(M4)

Wind 
speed 

𝑣𝑡

Gaussi
an 

(M0)

Weibull 
(M1)-
(M4)

...

...

Gaussia
n (M0)

Gaussia
n (M0)



EVALUATION OF PREDICTIVE PROPERTIES 1

 Model properties depend on the estimated reliable power

 Consider the subproblem of the maximum supply 𝑠𝑡 of an existing energy park in a 

use case

 “Fundamental building block” of the model 

 Which model M1- M4 performs best in predicting the maximum reliable power supply 

from an energy park in comparison to the benchmark model M0 assuming Gaussian 

distributions?
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VALIDATION

max
𝑠𝑡≥0

𝑠𝑡 s.t. Pr 

𝑖

෨𝑃𝑖𝑡 ≥ 𝑠𝑡 ≥ χ



EVALUATION OF PREDICTIVE PROPERTIES 2

 Model accuracy in terms of the CV(RMSE) (Aman et al., 2014) 

𝐶𝑉 𝑅𝑀𝑆𝐸 =
1

ҧ𝑜

σ𝑖=1
𝑛 (𝑝𝑖 − 𝑜𝑖)²

𝑛

 Compare the sample means, bootstrapping of n=10000 simulations and comparing 
the distribution of the CV(RMSE)’s mean for the benchmark and the other models 
(α=5%)

𝐻0: μ𝑀0
≥ μ𝑀𝑖

, 𝐻1 : μ𝑀𝑖
< μ𝑀0
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Variables

𝑝𝑖 Predicted value

𝑜𝑖 Observed value

ҧ𝑜 Mean of observed 

values

n Sample size

VALIDATION



EVALUATION OF PREDICTIVE PROPERTIES 3

 Observe different behaviour according to ex-ante specified level of reliability χ

 For lower levels of reliability, no difference compared to the benchmark model

 For higher values χ ≳ 0.8 models (M1) - (M4) outperform benchmark model
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Adapted PDF’s 
significantly 
outperform 
benchmark model 
of Gaussian 
distributions

VALIDATION



INTERMEZZO: SOLVING THE STOCHASTIC OPTIMIZAZION PROBLEM
THE SAMPLE APPROACH

Solution for generic probabilistic distributions via

1. Sample approach (Calafiore and Campi 2005, 2006; Calafiore 2010)

2. Sample and discard algorithm (Campi and Garatti 2011)
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PCC
• min

𝑥 ∈𝑋
𝐸 ሚ𝑓 𝑥 s.t. Pr(σ𝑖

෨𝑃𝑖𝑡(𝑥) ≥ 𝑑𝑡) ≥ χ

Sampl
ed

• min
𝑥 ∈𝑋

𝐸 ሚ𝑓 𝑥 s.t. σ𝑖 𝑃𝑖𝑡
𝑗

(𝑥) ≥ 𝑑𝑡 , 𝑗 = 1, … , 𝑁

Solutio
n

• Solve with standard methods

Solution is 
robust, 
whenever N is 
“adequately”
large



USE CASE: GENERATION EXPANSION PROBLEM

 Find capacities κ𝑖 to supply given demand 𝑑𝑡 for every point in the planning horizon 

and a given level of reliability χ in an economic way (capacity budgeting problem)

 Costs are measured by CAPEX:  the amount per installed capacity (wind: ξ1 ≈
1500 Τ€

𝑘𝑊 , solar: ξ2 ≈ 2300 Τ€
𝑘𝑊) (Cucchiella et al., 2015)

 What is the influence of the system reliability on the system costs?
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min
κ𝑖≥0



𝑖

κ𝑖 ξ𝑖 s.t. Pr 

𝑖

෨𝑃𝑖𝑡(κ𝑖) ≥ 𝑑𝑡 ≥ χ, ∀𝑡 ∈ T

APPLICATION



RESULTS
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APPLICATION



CONCLUSION

 Extension of deterministic procurement problem to consider risks associated with 

supply shortages

 Adapted pdf’s to estimate maximum reliable supply

 Flexible tool to support managerial decisions, applied in a use case
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MODEL VALIDATION

 A posterioi assessment of the use case

 Sample N constraints and compute empirical probability of constraint validation (s.t.
empirical probability is close ε=0.01 to true value with confidence greater than 95% (Calafiore and Campi, 2005))

 At low levels of reliability sample & discard algorithm introduces conservatism
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APPLICATION



THE SAMPLE APPROACH

 Fix 2 parameters: (1) reliability parameter 0<χ<1 and (2) confidence parameter 0<β<1

 Then choose the sample size (Calafiore and Campi 2005), sample size refined in 

(Calafiore and Campi 2005) 

𝑁 >
𝑛

(1 − χ)β
− 1

 Then with probability not smaller than 1- β, the sampled program returns an optimal 

solution which is robustly feasible, i.e. 

Pr( σ𝑖
෨𝑃𝑖𝑡 ≥ 𝑑𝑡 ) ≥ χ
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