

UNIVERSITY OF ICELAND

16th IAEE European Conference, Ljubljana, Aug. 27, 2019

Revealing trajectories towards a sustainable energy future

Introduction: Methodological Overview and Past Development Trajectories of the Icelandic Energy System: Lessons for the Future

Asgeirsson, Davidsdottir, Fazeli, Gunnarsdottir, Guðlaugsson, Shafiei, Spittler, Stefansson, Steingrimsdottir

Presenter: Brynhildur Davidsdottir Professor Environment and Natural Resources University of Iceland

Overview

- 1. Background
- 2. Past energy transitions in Iceland and current status
- 3. Analyzing the fourth transition
 - Research objective
 - Methods overview

1. Background – Energy and sustainable development

Sustainability challenges

The challenge: Balancing economic development with social and environmental objectives

Energy is central to this challenge

Link to energy?

Energy plays a key role in the three dimensions:

- A principal motor of economic growth and economic development
- A source of environmental stress (e.g. climate change)
- A prerequisite for meeting basic human needs and securing human wellbeing

=> Must get the energy dimension right to enable sustainable development; Sustainable energy development

GOAL 7: Ensure access to affordable, reliable, sustainable and modern energy for all.

15 LIFE ON LAND

13 CLIMATE ACTION

14 LIFE BELOW WATER

16 PEACE, JUSTICE AND STRONG

INSTITUTIONS

17 PARTNERSHIPS FOR THE GOALS

> SUSTAINABLE DEVELOPMENT

Sustainable energy development

Defined as "the provision of adequate energy services at affordable cost in a secure and environmentally benign manner, in conformity with social and economic development needs" (IAEA/IEA 2001)

2. Iceland Energy transitions in the past and current state

Development of primary energy use

Hydro 20%; Geothermal 61%; Oil 17%; Coal 2% Electricity 99,9% renewable; Heat 96% geothermal

How did this happen? Past transitions

The three transitions

1. 1900 - 1940; From biomass based to coal (84% coal 1940)

2. 1940 - 1965; From coal to oil and renew. energy (oil 65%)

3. 1965 - now; From oil to renewable energy - for electricity generation and heat

4. Future; Pending fourth transition

Source: Energy in Iceland, The Icelandic Energy Authority

Third Transition (1965 - 1980) – Transition to geothermal district heat

Drivers: Oil price shocks; Pollution in Reykjavik; Forward thinking by local decision-makers

Result: Large scale district heating. Currently over 96% heat for house heating from geo.

Benefits: Led to significant cost savings and reduced air pollution and GHG emissions

Primary energy use in Iceland 1940–2017 PJ 300 Peat 100% 90% Oil Coal 80% 250 70% Coal 60% 50% 200 Geothermal 40% 30% 20% 150 10% Hydropower Oil 100 Geothermal 50 Hydropower 0 945 2000 2010 950 955 960 965 970 975 980 985 990 995 2005 201

Direct use of geothermal heat - significant savings for each household as well for the nation

Source: Source: Ásdís Kristjansdottir; Energy Authority, Samorka, Confederation of Icelandic Enterprise

¹ Miðað við notkun á árinu 2014 og á verðlagi ársins 2014. Miðað við að óendurnýjanleg orka sé olía fyrir húshitun.

Less pollution and Greenhouse gas emissions – not to mention the well-being benefits!

House heating: Savings in CO₂ emissions if oil was used instead – Million tons CO2 per 2014

Savings close to total Icelandic emissions in 1990

Source: Ásdís Kristjansdottir; Energy Authority, Samorka, Confederation of Icelandic Enterprise

The Current State

81% of the primary energy is renewable

61% geothermal

20% hydropower

17% oil

2% coal

99,9% electricity from renewable energy

27% geothermal

73% hydropower

Less than 1% wind energy (has not been cost-competitive)

96% heat from geothermal

Oil consumption in Iceland

This is where there is still much work to do

3. Revealing trajectories towards a (more) sustainable energy future

How to transition to a fully renewable energy economy?

Considerations

- Supply possibilities what should we choose?
 - Electricity from renewable sources; hydrogen (electrolysis), biofuels/gas (from energy crops; organic waste, CH4 from landfills, CO2 converted to methanol)

Resource dynamics

- Impact of climate change on hydropower and biomass
- Resource limitations of geothermal resources (drawdown)
- Physical limitations of biofuel supply

Considerations

- Demand considerations (price impact e.g.)
 - Expected increase in electricity demand what are the implications for transition options?
 - Energy intensive industries
 - Electric cable to Europe
 - Must ensure affordable supply
- Minimizing environmental impact
 - Mitigating GHG emissions, impact on land etc..

Aim of the transition analysis

 Answer: How to transition to fully renewable and domestic energy in transport and fisheries - with a focus on:

1. Revealing possible transition pathways:

- Accounting for resource dynamics, limitations and different demand scenarios; options must be robust across different futures
- Compare pathways in terms of multidimensional sustainability impacts:
 - E.g. Micro and macroeconomic costs and benefits, GHG emissions, air quality, energy security, affordability...
- **2.** Draw policy insights for both supply and demand what are the policies we need to achieve the desired pathway?
- Provide direct decision support to local and national authorities

Decision support Trajectories/policy

Integrated model

Energy systems model UniSyD_IS TPES pathways, prices, vehicle stock, costs, benefits, env. Impact

Sustainability indicators

Multidimensional sustainability impacts Capturing stakeholder opinions of what is important Multi-criteria assessment Multiple themes for decision support

General equilibrium model GDP, employment, inflation

Presentations

- Implications of Fiscal-induced Electro-mobility Transition on Iceland's Energyeconomic System, Presenter: E. Shafiei Finnish Environmental Institute
- Modelling Geothermal Resource Utilization By Incorporating Resource Dynamics, Capacity Expansion, and Development Costs, Presenter: N. Spittler University of Iceland.
- Stakeholder Engagement for the Development of Indicators for Sustainable Energy Development, Presenter: I. Gunnarsdottir University of Iceland.
- Identifying Robust Development Trajectories for the Icelandic Energy Systems Towards Carbon Neutrality Using MCDA, Presenter: R. Fazeli University of Iceland.
- Conclusion the use of the modeling efforts to support decision-making, Presenters: H. Stefansson; E.I. Asgeirsson Reykjavik University.

Acknowledgements: The preparation of the presentations in this special session have been supported by:

- i) The Icelandic research council (RANNIS) through grant number 163464-051,
- ii) The National energy company (Landsvirkjun)iii) The Icelandic Road and Coastal Administration
- iv) Eimskip University fund

 v) The EU- Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675153 through the project AdaptEconII (Adaptation to a New Economic Reality).
vi) Icelandic society of women in academia