RECHARGE INFRASTRUCTURE PROJECTS: DID THEY REALLY BOOST THE FRENCH ELECTRIC VEHICLE MARKET?

Bassem HAIDAR^{1,2}, Pascal DA COSTA², Jan LEPOUTRE³, Yannick PEREZ²

¹ Groupe PSA [Peugeot Citroën]

² Laboratoire Génie Industriel (LGI), École CentraleSupélec, Université Paris-Saclay

³ ESSEC Business School

16th IAEE European Conference

School of Economics and Business, University of Ljubljana, Slovenia 28/08/2019

RECHARGE INFRASTRUCTURE PROJECTS: DID THEY REALLY BOOST THE FRENCH ELECTRIC VEHICLE MARKET?

Energy Challenges for the Next Decade

#IAEE19LJ

School of Economics and Business, University of Ljubljana, Slovenia

SUMMARY PLAN

- Motivation
- Literature review
- Problem identification
- Data presentation
- Method and results
- Discussions and future works
- Conclusion

MOTIVATION

Thesis Subject

Analysis of the strategies of operators of low-carbon recharging infrastructure: Electric and Hydrogen -Starting 15 January 2019 – Groupe PSA, CentraleSupélec and ESSEC Business School

Questions

- What encourage drivers to purchase electric vehicles?
- What are the impact of recharge infrastructure projects on the electric vehicles market?
- Recharge infrastructure Vs. PEV: The electromobility Chicken and Egg dilemma
- A French study case

Study

An econometrics study about the PEV sales in France and the impact of the recharge infrastrucutre projects on the driver's choice

LITERATURE REVIEW: EXISTING STUDIES ON PEV ADOPTION

Authors (Date)	Results
Van den Bergh et al. (2006)	The number of PEV models available on the market can help the client to be more convinced in this technology (Germany)
Hidrue et al. (2011)	Levels of education, income, and environmentalism to all be positively correlated to likelihood to purchase an EV (USA)
Tran et al. (2012)	The availability of the charging stations play a role in the driver's choice
Sierzchula et al. (2014)	Socio-demographic variables (income, education level) are not significant Financial incentives and charging infrastructure are significant factors, but they are not enough (30 countries)
Fearnley et al. (2015)	They studied BEV incentives in Austria and Norway . They found direct financial incentives to be effective.
Lieven (2015)	The installation of fast charging networks on freeways to be a necessity while high vehicle subsidies can be replaced by lower subsidies providing additional charging infrastructure.
Mersky et al. (2016)	Being close to recharge infrastructure is the most significant factor (Norway)
Li et al. (2017)	Factors which influence the client to buy an EV are divided into three main types: demographic, situational and psychological. Main barriers are: Driving range, Charging problem and Purchasing cost (14 countires)

PROBLEM IDENTIFICATION

- The relation between recharge infrastructure and purchasing a PEV
- Charging points are not the only factor which pushes clients to switch into electromobility

French case (Sources: Groupe PSA and EAFO)

EAFO: European Alternative Fuels Observatory

PROBLEM IDENTIFICATION

- We identify the PEV purchasing problem as a crossing between PEV manufacturers, PEV owners and recharge infrastructure
- Ji & Huang (2018) defined the factors which can help us to define the lack of EV market share

SOME EUROPEAN FAST CHARGING PROJECTS

Many European countries decided to invest in recharge infrastructure to boost their PEV market.

Project name	# stations/ # sites	Partners	Location
Ionity	400/~2400	BMW, Mercedes, Ford, VW Group	24 countries
Ultra-e	25/~100	Allego, Audi, BMW, Magna, Renault, Hubject	Netherlands, Belgium, Germany, Austria
E-Via Flex-E	14/~60	Enel, EDF, Enedis, Verbund, Nissan, Renault, Ibil	Italy, Spain, France
MEGA-E	39/322	Allego	20 countries
Central European	118/-	Verbund, CEUC, Enel X,	Austria, Czech
Ultra charging		Smartrics, Greenway, OMV	Republic, Italy,
			Hungary, Romania,
			Bulgaria and Slovakia
NEXT-E	30/-	E.ON, MOL, HEP, PETROL,	Czech Republic, Slovakia, Croatia, Hungary,
		Nissan, BMW	Slovenia, and Romania
E.ON x Clever	180/-	E.ON, Clever	Germany, France, Norway, Sweden, UK, Italy,
			Denmark
Instavolt network	-/200	Instavolt	UK
Fastned network	25	Fastned	GerUKmany, Netherlands, UK
Pivot Power and	45/100		UK
the National Grid			
EnBW	100-1000/800	EnBW and OMV	Germany

 In France, Corri-Door as well as many fast charging infrastructure projects have been launched in order to encourage clients to purchase a PEV.

Different types of data were collected from different sources:

- Annual PEV sales in France (2015 → 2018) from Groupe PSA
 - Collected data for every department
 - Type of the vehicle: pure electric (BEV) or plug-in hybrid (PHEV)
 - Model year
 - Autonomy (km)
 - Battery capacity (kWh)
 - Price (€)
 - Number of annual available models

Types of PEV models in France

Different types of data were collected from different sources:

- Recharge Infrastructure in France (2015 → 2018) from <u>www.eafo.eu</u> and <u>www.data.gouv.fr</u>
 - Number of installed normal charging points in France with power < 22 kW
 - Number of installed fast charging points in France with power > 22 kW

Different types of data were collected from different sources: Population

• **Externalities** in France (2015 \rightarrow 2018)

- Density per department (pp/km²) from <u>www.insee.fr</u> Different levels of urbanity
- Local subsidies per department (€) from <u>www.automobile-propre.com</u>
 - Two levels of local subsidies 2000€ and 5000€ additionally to the national subsidy (5000€)
 - Subsidies are considered constant throughout the period of this study

INSEE: Institut National de la Statistique et des Etudes Economiques (National Institute of Statistics and Economic Studies)

.

Different types of data were collected from different sources:

- **Externalities** in France (2015 \rightarrow 2018)
 - Price of 100 km traveled using an ICEV (€)
 - Price of diesel from www.statista.com
 - ICEV consumption rate (5L/100km) from ADEME
 - Price of 100 km traveled using an ICEV (€)
 - Price of electricity from www.statista.com
 - EV consumption rate (10kWh/100km) from ADEME

ADEME: Agence De l'Environnement et de la Maîtrise de l'Energie (Environment and Energy Management Agency)

METHOD: PANEL DATA REGRESSION OF VARIABLES ON PEV SALES SHARES

- Data were cleaned before analyzing
- We identified the correlation between the variables:
 - Autonomy and Battery capacity are highly correlated
 - \rightarrow Elimination of Battery capacity variable
 - Cost EV for 100 km and Cost ICEV for 100 km are highly correlated
 →Elimination of Cost EV for 100 km

 $\begin{aligned} &Log(Sales_{i,j,t}) \\ &= \alpha + \beta_1 Vehicle_Price_i + \beta_2 Autonomy_i + \beta_3 NormalCP_{j,t} \\ &+ \beta_4 FastCP_{j,t} + \beta_5 CostICEV100km_t + \beta_6 Subsidies_j \\ &+ \beta_7 Density_{j,t} + \beta_8 Number_of_Models_t + \beta_9 Model_Year_i + \varepsilon \end{aligned}$

i for the vehicle, j for the department, t for the year of sales, ε the error term

METHOD: PANEL DATA REGRESSION OF VARIABLES ON PEV SALES SHARES

- Autonomy, population density, diesel price and chargers are strongly significant and have positive impact on the local PEV sales
- Price, number of available models and model year are significant and have negative impact

Charging infrastructure are highly correlated to the PEV market

Subsidies are not significant

	Model Pooled panel data regression
Intercept	7.566e+01 (8.6e00) ***
Vehicle_Price (in Euros)	-6.95e-6 (4.69e-7)***
Autonomy (in km)	1.509e-3 (1.06e-4)***
Normal_CP	9.46e-5 (6.877e-5)***
Fast_CP	9.28e-4 (2.78e-4)***
Cost_ICEV_100km (€)	1.097e-1 (2.719e-2)***
Subsidies (€)	3,2408e-5 (9,485e-6)
Density (pp/km ²)	1.06e-4 (4.31e-6)***
Number of models	-2.058e-3 (2.38e-3)
Model Year	-3.72e-2 (4.28e-3)***
Ν	10125
Year fixed effects	Yes
Department fixed effects	Yes
Vehicle fixed effect	Yes
R ²	9.78%
Adjusted R ²	9.7%
P-value	< 2,2e-16
Regressio	n results

Signification codes: 0 '***'; 0.001 '**'; 0.01 '*'; 0.05 '.'

INTERPRETATION OF RESULTS ON PEV SALES SHARES Main conclusions:

- The EV market will be boosted if improvements are made on the technical part of the PEV
 - More battery capacity and light materials will lead to higher autonomy
 - Release new models on the market with affordable prices : learning by doing
- Clients are intrested in charging points. Normal and fast ones can boost the market → the necessity to invest in the recharge infrastructure
- More taxes on diesel can convince the driver about electromobility
- The model can be defined as follow:

```
 \begin{array}{l} Log(Sales_{i,j,t}) \\ = \alpha + \beta_1 Vehicle_Price_i + \beta_2 Autonomy_i + \beta_3 NormalCP_{j,t} + \beta_4 FastCP_{j,t} \\ + \beta_5 CostICEV100km_t + \beta_6 Subsidies_j + \beta_7 Density_{j,t} + \beta_8 Number_of_Models_t \\ + \beta_9 Model_Year_i + \varepsilon \end{array}
```


DISCUSSIONS AND RECOMMENDATIONS

- The model is robust within the variations of some variables:
 - We did two robutness tests:
 - Replacing the variables by a modified version of them
 - Eliminating each variable to know the impact on the model
 - Results show that:
 - Changing the infrastructure variables have a modest impact on the model → French PEV owners prefer to charge at house
 - Drivers are intrested in the autonomy and the price of the vehicle
 - Obviously, the density can caraterize the PEV purchasing degree and has the highest impact on the model

Recommendations

- PEV manufacturers: to boost this type of technologies
- Recharge infrastructure operators: to inestigate about the clients' needs
- Policy makers and the government:
 - To facilitate the installation of private chargers
 - To re-examinate the local subsidies

FUTURE WORK

- Future works:
 - More detailed data should be added in order to extend a « **bottom-up** » model
 - GDP (Gallagher and Muehlegger, 2011; Sierzchula et al., 2014),
 - All types of local incentives,
 - Renewable energy production (Li et al.; 2017),
 - Percentage of citizens who vote with the green party (per department),
 - Family sizes, education level, ages (Egbue and long; 2012),
 - More detailed information about charging points: sockets, type, etc.
 - The variation within the same year (months or seasons), etc.
 - Four years is not enough to conclude

CONCLUSIONS

- We studied the PEV purchasing activity in the French market in order to identify the reasons that encourage clients to buy these types of vehicles
- The data were agrregated from different sources: Groupe PSA, EAFO, DATA gouv, INSEE, etc.
- The study concluded about the significancy of chargers, price, autonomy of the vehicle, subsidies and model year.
- The last added taxes on the fuel did generate the « Gilets Jaunes », but did have an impact on the EV market
- Adding more variables will boost the model and will enlarge the scope of the study
- Recharge Infrastructure is not the only factor that boost the EV market

THANK YOU FOR LISTENING!

Questions?

Centre Technique Vélizy, FRANCE

PSA – NON SENSITIVE