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What is Disaggregation for?

• Disaggregate into several usage data from only whole-
building smart meter data  
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Helps understand

- peak occurrences and 

- usage composition  

Whole-building demand Disaggregated by usages
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Data

• Japanese commercial buildings smart meter open data

Collected under Japanese government-aided energy efficiency 

projects

Covers 16 business types (Restaurants, Hospitals, Schools, ... ), 

approx. 6,000 buildings across Japan

Use only “Supermarket” data 

1  hour granularity x 1 year (8,760 hours) 

Data items:

Business Attributes
E.g.: Industry, Location, Floor Area, …

Six distinct usages + Whole-building demand

3

Disaggregate by :

・ Random Forest regression (RFR) 

・ lightGBM algorithms

・Air Conditioning

・Freezing/Cooling Energy

・Lighting, Power, ….
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• Both temperature-sensitive but with different underlying 
equipment

• Of greatest magnitude within gross building demand 

Motivation to disaggregate A/C versus Freezing/Cooling demand
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Temperature-sensitive

demand

e.g. 

Package air 

conditioning 

units 
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Air 

Conditioning
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Forecasting model strategy
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RFR

lightGBM

Feature Values used: 

1-1. Whole-building demand

1-2. 1-hour previous value of  y

2-1. Hour of day (1 - 24 )

2-2. Day of the week (Sun. – Sat. )

3. Proxy temperature (of nearby city)

Auto Regressive(1) model

Feature Matrix 

X

Explanatory Variables

Demand

y
・Air Conditioning

・Freezing / Cooling

Target Variable 
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• Target: 30% in a year
Mean Sq. Errors = 19.7 [%]

(MSE)
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Results for one building :  Air Conditioning , using RFR
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Results for one building :  Freezing / Cooling , using RFR

• Target: 30% in a year
MSE = 10.9 [%]

Better prediction than A/C

Absolute energy 

smaller in winter, due 

to lower outside air 

temperature
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Across building forecast : Cross validation plan
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* Used samples that had measurements of 
both A/C and Freezing/Cooling energy 
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Results for across-building: Root Mean Sq. Errors, by lightGBM

• Building-wise RMSE
Many buildings fall between 0 and 10 [%] RMSE
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Average = 6.52

Median = 5.53

Variance = 23.56

Average = 6.68

Median = 6.29

Variance = 4.71
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Air Conditioning Freezing / Cooling
Avg. Avg.

High variance & long tails due to difficult 

buildings and outliers

Average is almost the same
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Example predicted time-series,  across-building lightGBM
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Prediction errors, across-building lightGBM
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• A little percent prediction points 

are anomaly error

• Air Conditioning

• Freezing / Cooling
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• only 10 points out of  +/-5% 

range

• Over 99 percent prediction 

points fall within +/-5% range

𝑦𝑒𝑟𝑟𝑜𝑟 =
𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑

𝑦𝑝𝑟𝑒𝑑
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SHAP figure : Feature importances, across-building lightGBM
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If these values are large:

・positive impacts to predicted values

・the greater these values, 

the greater the effect
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Highest impact on forecasted values from :

・pre_AC: 1-hour-before target value

・overall: Whole-building demand
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Conclusions

• Successful disaggregation:
Temperature-sensitive demand was disaggregated 

between Air Conditioning and Freezing/Cooling

Made possible by lightGBM model trained with different 
buildings, capturing differences between A/C and 
Freezing/Cooling

• Possible application:
Demand side

potentially detect equipment fault

find peak timing in a year

Supplier side

Make energy without excess
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Future work

• Problems and possible improvements
Air conditioning resulted to relatively less accurate prediction due 

to some difficult buildings and outliers

Better model tuning

Better parameter choice

Proper choice of training data

• Next steps
Want to extend to other types of industry

Try to predict with non-AR(1) model
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