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What is Disaggregation for?

* Disaggregate into several usage data from only whole-
building smart meter data
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Whole-building demand Disagqgregated by usages

Helps understand
- peak occurrences and

- usage composition
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Data

« Japanese commercial buildings smart meter open data

» Collected under Japanese government-aided energy efficiency
projects

» Covers 16 business types (Restaurants, Hospitals, Schools, ... ),
approx. 6,000 buildings across Japan

v'Use only “Supermarket” data
»1 hour granularity x 1 year (8,760 hours)
» Data items:

v'Business Attributes
E.g.: Industry, Location, Floor Area, ...

v Six distinct usages + Whole-building demand

(. Air Conditioning Disaggregate by :
*Freezing/Cooling Energy - Random Forest regression (RFR)
- Lighting, Power, .... - lightGBM algorithms
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Motivation to disaggregate A/C versus Freezing/Cooling demand

 Both temperature-sensitive but with different underlying
equipment

» Of greatest magnitude within gross building demand
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Forecasting model strategy

Explanatory Variables

Feature Matrix | jigcem /| Derr;/and
o X - R VA

A Air é:onditioning
*Freezing / Cooling

Target Variable

Feature Values used:
1-1. Whole-building demand

1-2. 1-hour previous value of vy [ ) J
2-1. Hour of day (1 - 24) | Auto Regressive(1) model

2-2. Day of the week (Sun. — Sat. )
3. Proxy temperature (of nearby city)
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Results for one building : Air Conditioning , using RFR

* Target: 30% In a year

Mean Sq. Errors = 19.7 [%]

(MSE)
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Results for one building : Freezing / Cooling, using RFR

* Target: 30% In a year
MSE = 10.9 [%)]
» Better prediction than A/C
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Across building forecast : Cross validation plan
215 Supermarkets *
_ Evaluation
8760 x 43
- Evaluation
8760 x 43
4 Evaluation
8760 x 43
4 Evaluation
8760 x 43
s Evaluation
8760 x 43

* Used samples that had measurements of
both A/C and Freezing/Cooling energy 10/ 16

Number of CV iterations




Results for across-building: Root Mean Sqg. Errors, by lightGBM

 Building-wise RMSE
»Many buildings fall between 0 and 10 [%] RMSE

[Average IS almost the same ]7

Avg. Air Conditioning | Avg. Freezing / Cooling
| 40 !
. ' Average =, 6 52 - | Average =i6.68:
Median = 5 3. N ' Median = 6.29
> Variance = 23 5@ N Variance = 4.71
S /. e
> 20
o
e 5 |
L
10 1
5
] . : —_ o - : : -
o 10 20 30 40 25 50 7.5 10.0 12.5 15.0 17.5 20.0
RMSE value !/%] / RMSE value [%]
High variance & long tails due to difficult
buildings and outliers 11/ 16




Example predicted time-series, across-building lightGBM
=== Alr Conditioning
====  Freezing / Cooling
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Prediction errors, across-building lightGBM
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SHAP figure : Feature importances, across-building lightGBM
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» Successful disaggregation:
» Temperature-sensitive demand was disaggregated
between Air Conditioning and Freezing/Cooling

»Made possible by lightGBM model trained with different
buildings, capturing differences between A/C and
Freezing/Cooling

* Possible application:

»Demand side
v'potentially detect equipment fault
v'find peak timing in a year

» Supplier side
v"Make energy without excess



 Problems and possible improvements

» Alr conditioning resulted to relatively less accurate prediction due
to some difficult buildings and outliers

» Better model tuning
v Better parameter choice
v'Proper choice of training data

* Next steps
»Want to extend to other types of industry
» Try to predict with non-AR(1) model



