# +CITXCHANGE

Local Flexibility Markets in Smart Cities: Interactions between Positive Energy Blocks (PEBs)

> **Stian Backe,** Pedro Crespo del Granado, Güray Kara, Asgeir Tomasgard

16th IAEE European Conference 2019



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824260.

#### Outline

Motivation for Local Flexibility Markets

Market Design

Modelling Framework

Case: P2P trading at an Industrial Site



# Motivation for Local Flexibility Markets



#### **Decentralization**



-CITXCHANGE Willi

Williams, James H., et al. "The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity". Science 335.6064 (2012): 53-59.





Market Design



#### **Pool-based trading**

- Uniform terms
- Consecutive clearings (Day-ahead, intra-day, etc.)
- One-sided/Two-sided
- Price volatility
- Coordinated dispatch

HANGE



## **Bilateral trading**

- Customized terms
- Contract clearings
- Long-term bilateral relationships
- Lowered risk
- Decentralized dispatch

HANGE



| Key principles of electricity markets              | Principle in a |  |
|----------------------------------------------------|----------------|--|
|                                                    | local market?  |  |
| Free choice of suppliers                           | Challenged     |  |
| Non-competitive development of grid infrastructure | Challenged     |  |
| Market liquidity                                   | Challenged     |  |

| Key principles of electricity markets              | Principle in a |
|----------------------------------------------------|----------------|
|                                                    | local market?  |
| Free choice of suppliers                           | Challenged     |
| Non-competitive development of grid infrastructure | Challenged     |
| Market liquidity                                   | Challenged     |
| Market access                                      | Strengthened   |
| System adequacy                                    | Strengthened   |
| Asset utilization                                  | Strengthened   |

| Key principles of electricity markets              | Principle in a |
|----------------------------------------------------|----------------|
|                                                    | local market?  |
| Free choice of suppliers                           | Challenged     |
| Non-competitive development of grid infrastructure | Challenged     |
| Market liquidity                                   | Challenged     |
| Market access                                      | Strengthened   |
| System adequacy                                    | Strengthened   |
| Asset utilization                                  | Strengthened   |
| Practical feasibility                              | Depends        |
| System security                                    | Depends        |

# Modelling Framework

Linear programming and rolling horizon



### **Local Flexibility Markets**

#### **Objective**

- Deferring grid investments
- Facilitate local RES
- Preserve power quality
- Reduce energy transport



## **Local Flexibility Markets**

#### **Objective**

- Deferring grid investments
- Facilitate local RES
- Preserve power quality
- Reduce energy transport
- Energy insight
- Citizen engagement

## **Local Flexibility Markets**

#### **Objective**

- Deferring grid investments
- Facilitate local RES
- Preserve power quality
- Reduce energy transport

CHANGE

- Energy insight
- Citizen engagement



#### **Categorization of Assets**



#### Inside the PEB

#### **Categorization of Assets**



Temporal link between all time steps

#### **Categorization of Assets**



# Case: P2P trading at an Industrial Site

Value of peak load reduction and shared flexibility assets



#### **Conceptual study of Norwegian site**

- Value of P2P trading at an industrial site
- Peak power
  pricing





Sæther, Guro. "Peer-to-Peer Energy Trading in Combination with Local Flexibility Resources in a Norwegian Industrial Site". Master thesis (2019).



Base Case: Flexible buildings

 $c_{feed-in} < c_{g,tot}$ 

Each customer dispatch flexibility with only an individual perspective



Cases

Base Case: Flexible buildings

 $c_{feed-in} < c_{g,tot}$ 

Each customer dispatch flexibility with only an individual perspective Case 1:

P2P trading

 $c_{feed-in} < c_{p2p} < c_{g,tot}$ 

Trading between customers to utilize flexibility collectively

Cases

Base Case: Flexible buildings

 $c_{feed-in} < c_{g,tot}$ 

Each customer dispatch flexibility with only an individual perspective Case 1: P2P trading

 $c_{feed-in} {<} c_{p2p} {<} c_{g,tot}$ 

Trading between customers to utilize flexibility collectively Case 2: P2P + Central storace $c_{feed-in} < c_{ch} < c_{p2p} < c_{dch} < c_{g,tot}$ 

Trading between customers with the option of using a shared battery for flexibility



#### **Further assumptions**

- Electricity only
- Linear model (Kirchoff's laws are neglected)
- No investments
- Perfect information
- No storage degradation



## Input data

|                               | Building 1                             | Building 2               | Building 3               | Building 4           | Building 5 |
|-------------------------------|----------------------------------------|--------------------------|--------------------------|----------------------|------------|
| Area of business              | Construction<br>material<br>production | Mechanical<br>workshop   | Food pro-<br>cessing     | Food pro-<br>cessing | Forestry   |
| Yearly demand $[kWh/yr]$      | 1 170 000                              | 250 000                  | 1 400 000                | 360 000              | 2 800 000  |
| Yearly peak demand $[kWp/yr]$ | 345                                    | 157                      | 261                      | 115                  | 789        |
| Roof top area $[m^2]$         | 5 500                                  | 2 000                    | 6 000                    | 6 000                | 9 000      |
| Assumed energy<br>features    | PV, CHP and<br>load shifting           | EVs during<br>work hours | CHP and<br>load shifting | PV                   | PV and CHP |



Flexible demand No flexible demand

#### **Flexibility assets**

- Load shifting (10% of peak load)
  - **Building 1** 34.5 kW, 138 kWh
    - Initial available 100%, available during work hours
    - Load shifting cost: 0.4 NOK/kWh
  - **Building 3** 26 kW, 104 kWh
    - Initial available 100%, always available
    - Load shifting cost: 1.2 NOK/kWh

#### **Flexibility assets**

- Load shifting (10% of peak load)
  - Building 1 34.5 kW, 138 kWh
    - Initial available 100%, available during work hours
    - Load shifting cost: 0.4 NOK/kWh
  - **Building 3** 26 kW, 104 kWh
    - Initial available 100%, always available
    - Load shifting cost: 1.2 NOK/kWh
- EV flexibility (V2G) 30x20 kW, 30x50 kWh
  - Building 2
    - Initial available 60%, available during work hours
    - Required available 70% at the end of each work day



#### **Flexibility assets**

- Load shifting (10% of peak load)
  - Building 1 34.5 kW, 138 kWh
    - Initial available 100%, available during work hours
    - Load shifting cost: 0.4 NOK/kWh
  - **Building 3** 26 kW, 104 kWh
    - Initial available 100%, always available
    - Load shifting cost: 1.2 NOK/kWh
- EV flexibility (V2G) 30x20 kW, 30x50 kWh
  - Building 2
    - Initial available 60%, available during work hours
    - Required available 70% at the end of each work day
- Central storage 33.3 kW, 1 000 kWh



#### **Results**

|                                                               | Base Case<br>(Reference) | $\begin{array}{c} \textbf{Case 1} \\ (P2P \ trade) \end{array}$ | Case 2<br>(P2P & storage)      |
|---------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|--------------------------------|
| Total costs [NOK]<br>Total savings [NOK]<br>Total savings [%] | 2,334,921                | $2,175,170\ 159,751\ 6.8~\%$                                    | 2,077,326<br>257,596<br>11.0 % |



#### **Results**

|                                                               | Base Case       | Case 1                                                  | Case 2                                                  |
|---------------------------------------------------------------|-----------------|---------------------------------------------------------|---------------------------------------------------------|
|                                                               | (Reference)     | (P2P trade)                                             | (P2P & storage)                                         |
| Total costs [NOK]<br>Total savings [NOK]<br>Total savings [%] | 2,334,921       | $egin{array}{c} 2,175,170\ 159,751\ 6.8~\% \end{array}$ | 2,077,326<br>257,596<br>11.0 %                          |
| Yearly peak demand [kWp]                                      | $1,\!412$       | -7.0~%                                                  | $\begin{array}{c} -19.5 \ \% \\ -25.6 \ \% \end{array}$ |
| Cost of peak power                                            | $1,\!017,\!800$ | -15.0~%                                                 |                                                         |



#### **Results**

|                                                                              | Base Case<br>(Reference) | Case 1<br>(P2P trade)            | Case 2<br>(P2P & storage)                                      |
|------------------------------------------------------------------------------|--------------------------|----------------------------------|----------------------------------------------------------------|
| Total costs [NOK]<br>Total savings [NOK]<br>Total savings [%]                | 2,334,921                | $2,175,170\ 159,751\ 6.8~\%$     | 2,077,326<br>257,596<br>11.0 %                                 |
| Yearly peak demand [kWp]<br>Cost of peak power                               | $1,412 \\ 1,017,800$     | -7.0~%<br>-15.0~%                | $\begin{array}{c} -19.5 \ \% \\ -25.6 \ \% \end{array}$        |
| Power sold to grid [kWh]<br>P2P export [kWh]<br>Central storage charge [kWh] | 110,346                  | $\substack{-67.0 \ \%}{206,208}$ | $\begin{array}{c} -87.9 \ \% \\ 260,537 \\ 56,894 \end{array}$ |

# **Results - Savings per building**

|               | BC: reference   | C1: P2P         |             | 3C: reference C1: P2F |             | C2: P2P & Sha | red storage |
|---------------|-----------------|-----------------|-------------|-----------------------|-------------|---------------|-------------|
|               | Tot costs [NOK] | Tot costs [NOK] | Tot savings | Tot costs [NOK]       | Tot savings |               |             |
| <b>B</b> 1    | $422,\!847$     | $404,\!073$     | 4.4~%       | $378,\!984$           | 10.4~%      |               |             |
| <b>B2</b>     | $201,\!494$     | $176,\!569$     | 12.4~%      | $172,\!827$           | 14.2~%      |               |             |
| <b>B3</b>     | $443,\!605$     | $413,\!391$     | 6.8~%       | $412,\!649$           | 7.0~%       |               |             |
| $\mathbf{B4}$ | $182,\!655$     | $147,\!645$     | 19.2~%      | $140,\!137$           | 23.3~%      |               |             |
| $\mathbf{B5}$ | $1,\!083,\!698$ | 1,033,493       | 4.6~%       | 972,728               | 10.2~%      |               |             |

# **Results - Savings per building**

|               | BC: reference   | C1: P2P         |             | rence C1: P2P C2: P2 |             | C2: P2P & Sha | 2P & Shared storage |  |
|---------------|-----------------|-----------------|-------------|----------------------|-------------|---------------|---------------------|--|
|               | Tot costs [NOK] | Tot costs [NOK] | Tot savings | Tot costs [NOK]      | Tot savings |               |                     |  |
| <b>B</b> 1    | $422,\!847$     | $404,\!073$     | 4.4~%       | $378,\!984$          | 10.4~%      |               |                     |  |
| <b>B2</b>     | $201,\!494$     | $176,\!569$     | 12.4~%      | $172,\!827$          | 14.2~%      |               |                     |  |
| <b>B3</b>     | $443,\!605$     | $413,\!391$     | 6.8 %       | $412,\!649$          | 7.0 %       |               |                     |  |
| $\mathbf{B4}$ | $182,\!655$     | $147,\!645$     | (19.2 %)    | $140,\!137$          | (23.3 %)    |               |                     |  |
| $\mathbf{B5}$ | $1,\!083,\!698$ | $1,\!033,\!493$ | 4.6~%       | 972,728              | 10.2~%      |               |                     |  |



#### Results – B4 (summer week)



# **Results - Savings per building**

|           | BC: reference   | C1: P2P         |             | BC: reference C1: P2F |             | C2: P2P & Sha | red storage |
|-----------|-----------------|-----------------|-------------|-----------------------|-------------|---------------|-------------|
|           | Tot costs [NOK] | Tot costs [NOK] | Tot savings | Tot costs [NOK]       | Tot savings |               |             |
| <b>B1</b> | $422,\!847$     | $404,\!073$     | 4.4 %       | $378,\!984$           | 10.4~%      |               |             |
| <b>B2</b> | $201,\!494$     | $176,\!569$     | (12.4 %)    | $172,\!827$           | (14.2 %)    |               |             |
| <b>B3</b> | $443,\!605$     | $413,\!391$     | 6.8~%       | $412,\!649$           | 7.0~%       |               |             |
| <b>B4</b> | $182,\!655$     | $147,\!645$     | 19.2~%      | $140,\!137$           | 23.3~%      |               |             |
| <b>B5</b> | $1,\!083,\!698$ | 1,033,493       | 4.6~%       | 972,728               | 10.2~%      |               |             |

#### Results – B2 (summer week)



#### Results – B4+B2 (summer week)



+CITXCHANGE

#### Results – B2 (summer week)



#### **Case study - Conclusions**

- Peak shaving amplified
  - Central storage gives large peak shaving
- Local generation valued on-site
  - No curtailment of local generation
  - Large reduction in grid feed-in



#### References

- Backe, S., del Granado, P. C., Kara, G., & Tomasgard, A. "Local Flexibility Markets in Smart Cities: Interactions between Positive Energy Blocks," 16th IAEE European Conference, 2019.
- Lüth, A, Zepter, J. M., del Granado, P. C., & Egging, R. "Local electricity market designs for peer-to peer trading: The role of battery flexibility," *Applied Energy*, vol. 229, pp. 1233 – 1243, 2018.
- Zepter, J. M., Lüth, A., del Granado, P. C., & Egging, R. "Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage", *Energy and Buildings*, 184, 163-176, 2019.
- Sæther, G. "Peer-to-Peer Energy Trading in Combination with Local Flexibility Resources in a Norwegian Industrial Site". Master thesis, The Norweigian University of Science and Technology (NTNU), 2019.





#### Link between data and optimization model



## **Decision making under uncertainty**

- Robust optimization
- Stochastic programming

HANGE

• Deterministic planning (with a high optimization frequency)



(c) Deterministic planning