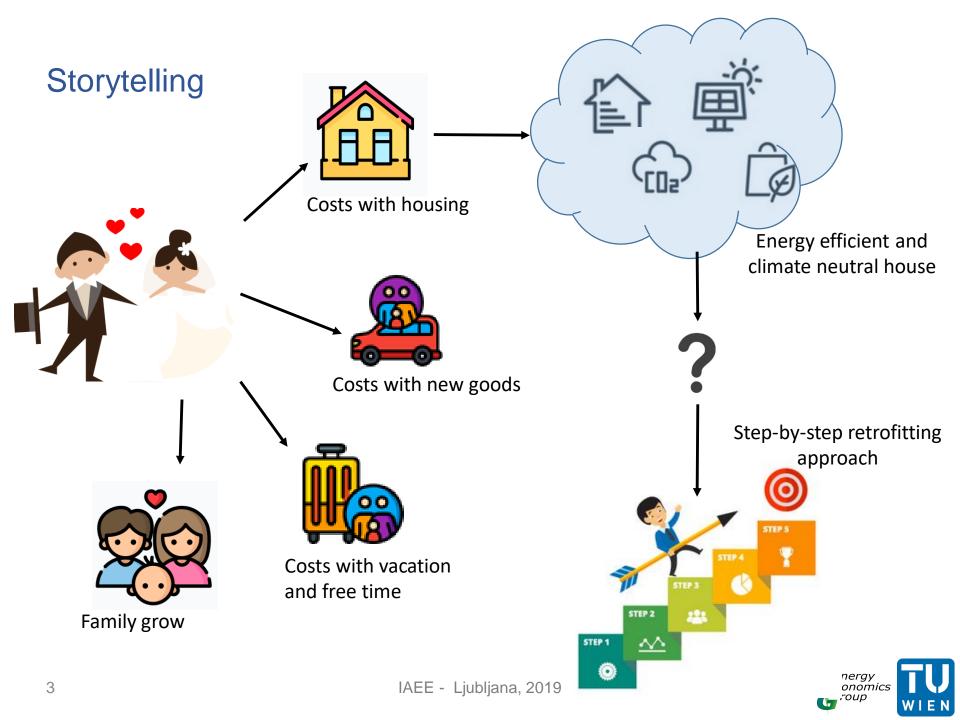


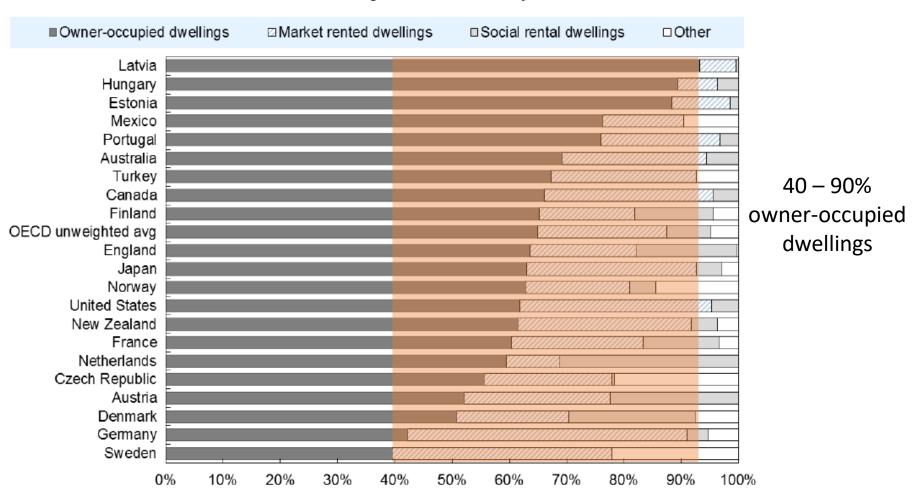
Long-term and step-by-step deep renovation approach including building owner's ability to invest in a retrofitting optimisation model

Iná MAIA, Lukas KRANZL and Andreas MÜLLER

16th IAEE European Conference, Ljubljana 2019

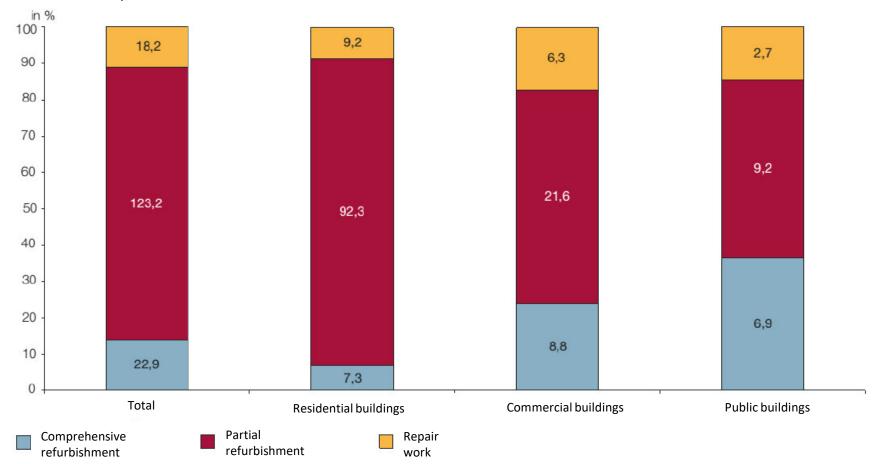

26.08.2019

Content


- Introduction
- Research question
- Method
- Results
- Conclusions and Outlook

Introduction: facts about owner-occupied dwellings

Per cent of dwelling stock, most recent year


Source: Housing tenure across OECD countries, del Pero et al. 2016

Introduction: facts about empirical evidences of step-by-step

Existing Building stock volume of comprehensive and partial refurbishment, as well as repairing (in Mrd. Euro) Stand: Germany, 2010

Source: adapted from Fehlhaber, 2017 – PhD Dissertation – Bewertung von Kosten und Risiken bei Sanierungsprojekten

Introduction: political context

- Building renovation passports:
 - Energy Performance of Buildings Directive (EPBD) 2018/844/EU introduced in Article 19a:

"complementary document providing a **long-term** and **step-by-step** renovation roadmap for a specific building"

This document should guide and help building owners through the renovation process

Overall objective and research question

- Main objective:
 - Bridge the gap between building stock decarbonisation targets and real renovation processes
 - In real life, many renovation processes are performed step-by-step
 - But, most deep renovation modelling focus on single stage deep renovation
- Model under development: step-by-step retrofitting optimisation model focusing on owner-occupied dwellings
- Objective of this paper: explore some aspects of the optimisation's framework

Which relevant **cost and building owner's ability to pay assumptions** should be taken into account in a step-by-step optimisation model?

Different disposable income and affordability to pay for retrofitting

CO2-Reduction until 2050

Building stock with different building typologies and

energy efficiency standards

Sources: Jürgen Fälchle - Fotolia.com, Amber Taufen - inman.com and Andre Haykal Jr - thriveglobal.com

Method: identifying main differences between retrofitting approaches

	Single stage	Step-by-step
Definition	Only major renovation (including whole building envelope)	Retrofit measures performed according to trigger points.
Time dimension	At once	Over years (or decades)
Effects on climate targets	Faster CO2 emission reduction (potentially more energy savings)	Gradual CO2 emission reduction
Main risks	If not done right, mistakes take long time (even decades) to be corrected (lock-in effects)	Include missed opportunities and lock-in effects
Main barrier	Disruption and/or affordability	Less information about right sequence of measures
Material Costs	At once – possibility that loans and incentives are available	Cost-shifting – further measures costs can be partially anticipated
Labour / Montage Costs	At once	Scaffolds and other construction site equipment might have to be mounted more than once

Sources: adapted from Topouzi et al.2019 – Deep retrofit approaches: managing risks to minimise the energy performance gap

Method: overview of step-by-step optimisation framework

Objective function: maximising net present value

$$\max NPV = \sum_{t}^{T} \frac{cF_{t}}{(1+r)^{t}} + \frac{L_{T}}{(1+r)^{T}}$$

$$CF_t = INC_t * s - IC_{er,t} - EC_t - OMC_t$$

$$L_T = \sum_{i} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$

NPV, energy related net present value [EUR];

CF, cash-flow of energy related expenses [EUR];

L, residual value of the retrofitting measures in year T [EUR];

r, interest rate [%];

- t, time [a];
- T, period of economic consideration [a];
 - INC, household income [EUR/a];
- s, expenditure share of annual income [%/a];
- IC_{er} energy related investment cost of retrofitting measures [EUR];
 - EC, annual running energy costs [EUR/a];
 - OMC, operation and maintenance costs [EUR/a];
 - tL,technical lifetime [a];
 - T, optimisation period time [a];

Restrictions:

- Material's aging process
- Budget restriction

Method: setting input data, example for SFH in Germany

Building vintage

Until 1918

1919-1948

1949-1957

1958-1968

1969-1978

1979-1983

1984-1994

1995-2001

2002-2009

Household income

Income ranges

- Profile 1 ie. 20000 €/a
- Profile 2 ie. 31000 €/a
- •Profile 3 ie. 43000 €/a
- •Profile 4 ie. 57000 €/a

Expenditures share

- •6%
- 15%

Retrofitting mesures

External wall insulation

Roof insulation

Ground floor insulation

Windows replacement

Heating/cooling system replacement

> DHW system replacement

PV installation

Material and energy system

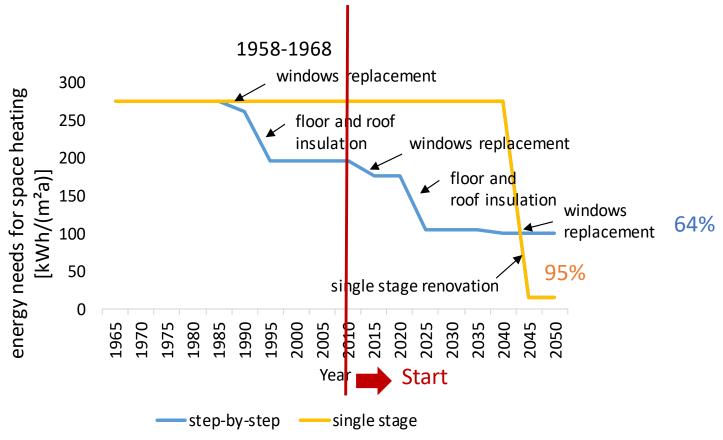
Material costs

Labour costs

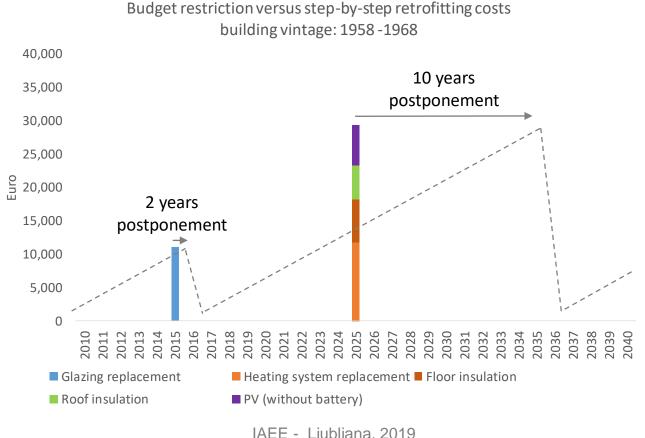
Energy carrier prices

Material life time

Index for price development

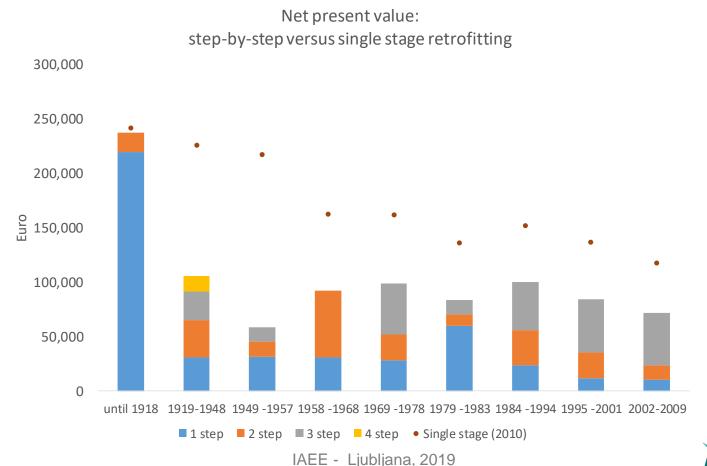

Sources: TABULA Episcope, 2012, Bundeszentrale für politische Bildung, 2018, Eurostat, 2018, Pfeiffer, 2010 and Invert-EE/Lab, 2019

Results: pre-analysis, SFH Germany


- Possible development of energy needs for space heating (concepts step-bystep and single stage)
- Examples: construction vintages 1958-1968

Results: exemplary case

- Total costs step-by-step: 42.000 Euros (including scaffold; excluding external wall insulation)
- Measure determined by material's lifetime
- ▶ 3. Profile of budget restriction 5% of share


Results: total costs for all reference buildings

- Step-by-step approach is only cheaper in cases, where not all measures are performed
- Older buildings are more expensive to deep retrofit

Results: net present value for all reference buildings

- Interest rate: 3%
- Single stage has higher NPV than step-by-step in all cases
- Time of retrofitting becomes a relevant parameter

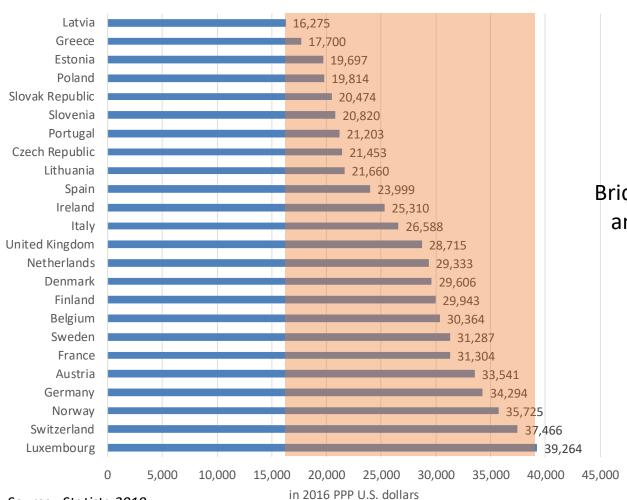
Conclusions

Which relevant cost and building owner's budget restriction assumptions should be taken into account in a step-by-step optimisation approach?

- Measure by measure cost data (material and labour costs)
- Four different income profile with two different expediture share -> building owner's budget restriction: decisive parameter, to define the time dimension, when retrofitting activities will be performed
- Net present value is an appropriate indicator to analyse the economic effects of time dimension of retrofitting approaches
- Loan, incentives and income adjustment should be included, in order to help designing policies schemes

Outlook

- Optimisation approach: calculate the optimal retrofitting time -> distribution and different cases; in line with technical and economical aspects
- Techno-economic relevant synergies of measures (sequence and dependency of measures)
- Sensitivity analysis based on cost and income profile variations, energy prices and political scenarios


Thank you for your attention!

Iná Maia

Introduction: facts about household net adjusted disposable income in OECD countries in 2018

Household net disposable income in EU countries in 2018

Bride range between the EU and also inside a country

Source: Statista 2019

Method

$$F_t = INC_t * s - IC_{er,t} - EC_t - OMC_t$$

CF, cash flow of energy related expenses [EUR]; INC, household income [EUR/a]; s, allocation factor of total annual income on energy related expenses [%]; IC_{er}, energy related investment cost of retrofitting measures [EUR]; EC, annual running energy costs [EUR/a]; OMC, operation and maintenance costs [EUR/a]

•
$$IC_{er,i,t} = \sum_{i} [IC_{tot,i} - (1 - p_{t,i}) * IC_{man,i}] * x_{t,i}$$

 IC_{man} , maintenance investment cost of renovation measures [EUR]; x, binary variable (1 or 0) [-]; p, probability of material's aging process [-]; i, building envelope (external wall, window, floor or roof) and active system (heating, cooling, domestic hot water)

•
$$p_{i,t} = 1 - e^{-\left(\frac{t - t_{i,0}}{t_{i,L} - t_{i,0}}\right)^m}$$
, where t, t₀, m>0

p; probability of material's aging process; m, aging exponent [-]; t_L , technical lifetime [a]; t_O , period without failure [a]; t, time [a].

Method

•
$$EC_t = \sum_i fed_{t,i} * pr_{t,i}$$

EC, energy costs [EUR/a]; fed, final energy demand [kWh/a]; pr, energy price [EUR/kWh]

•
$$OMC_t = \sum_i IC_{er,t,i} * f_{OMC,i}$$

OMC, operation and maintenance costs [EUR/a]; IC_{er} , energy related investment costs of active system [EUR]; f; operation and maintenance factor [%]

$$L_T = \sum_{i} \sum_{t} IC_{er,t,i} * \frac{(T-t)}{t_{L,i}}$$

L, residual value [EUR]; total investment costs [EUR]; t∟,technical lifetime [a]; T, optimisation period time [a]; t, retrofitting time

wenn T-t<0,
$$L_T = 0$$

Method: step-by-step optimisation framework

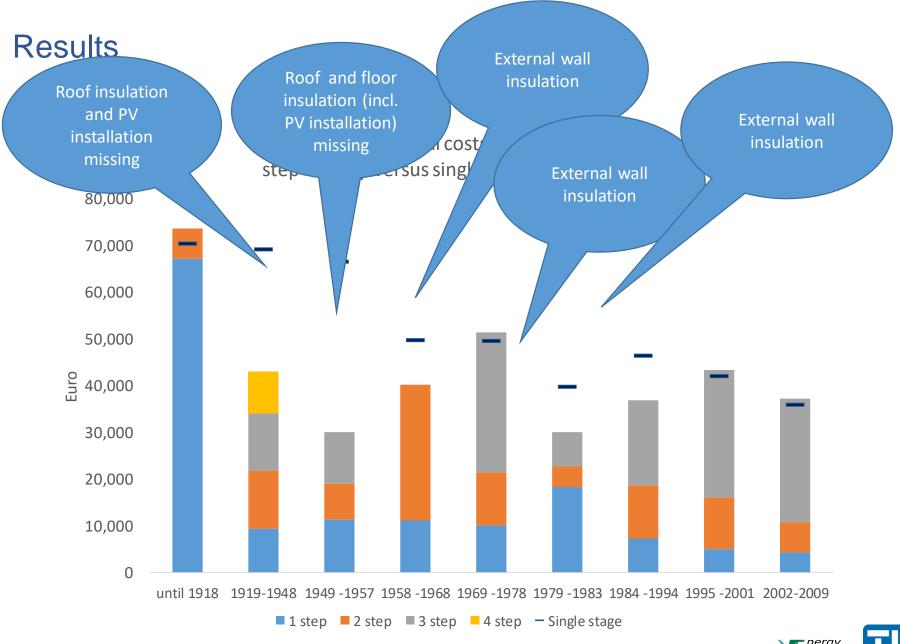
Conditions for the step-by-step renovation

for:
$$p_{i,t} = 1 - e^{-\left(\frac{t - t_{i,0}}{t_{i,L} - t_{i,0}}\right)^m}$$
, where t, t₀, m>0

p; probability of material's aging process; m, aging exponent [-]; t_L , technical lifetime [a]; t_O , period without failure [a]; t, time [a].

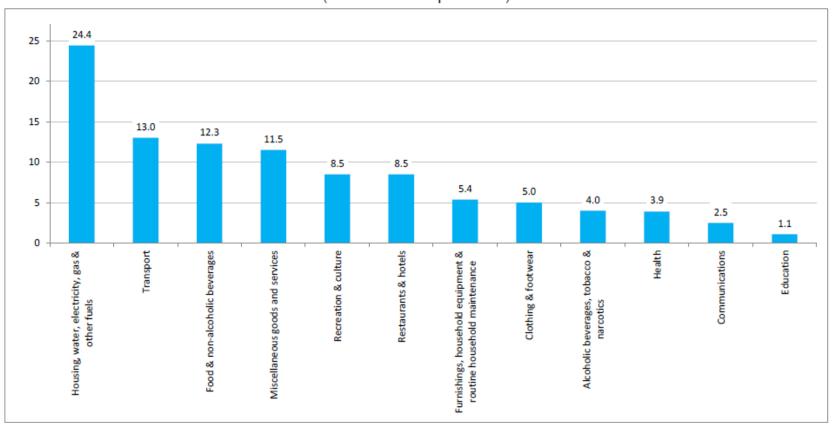
if:
$$B_t \ge IC_{er,t} + EC_t + OMC_t$$
 and $p_t > 0.05$

- with $B_t = A_{t-1} * (1 + l)$
- with $A_t = (INC_t * s) IC_{er,t} EC_t OMC_t + A_{t-1}$


then:

- $fed_{t+1} = fed_t * f(IC_{er,i})$
- $x_{i,t} = 1$ und $p_{i,t+1} = 1 e^{-\left(\frac{t-t_{i,0}}{t_{i,L}-t_{i,0}}\right)^m}$ (aging process restarts)

B; budget restriction [B]; IC_{er} energy related investment cost of retrofitting measures [EUR]; EC, annual running energy costs [EUR/a]; OMC, annual running operation and maintenance costs [EUR/a]; I, loan [EUR]; A, cumulated allocated energy related asset [EUR]; INC, household income [EUR]; s, allocation factor of total annual income on energy related expenses [%]; p, probability of material's aging process [%]; fed, final energy demand [kWh/a]; x, binary variable (1 or 0) [-].



Methods: setting input data

Household final consumption expenditure in the EU, by broad consumption purpose, 2015 (as % of total expenditure)

Retrofitting measure	Constructive solution	Material specification
ROOFINSULATION	Removing the roof and adding a new layer of insulation	30 cm of thermal insulation
ROOF INSULATION	Addition of a thermal insulation layer over the last slab	15 cm of thermal insulation
EXTERNAL WALL INSULATION	External insulation (EIFS System)	10 cm of thermal insulation
EXTERNAL WALL INSULATION	External insulation (EIFS System)	20 cm of thermal insulation
FLOOR INSULATION	Installation of insulation in the outer of the floor slabs	10 cm of thermal insulation
FLOOR INSULATION	Installation of insulation in the outer of the floor slabs	15 cm of thermal insulation
WINDOW REPLACEMENT	Improve the thermal quality of the window	Double glass with air cavity and a low-e glass
ACTIVE SYSTEM	Generation system replacement	Air heat pump + other advices
RENEWABLE	PV panels installation	Panels + other advices

Middle material's life time	Building element	Building's material	until 1918	1919- 1948	1949 - 1957	1958 - 1968	1969 - 1978	1979 - 1983	1984 - 1994	1995 - 2001	2002- 2009
		Construction year:	1890	1935	1955	1965	1975	1980	1990	2000	2005
20	heating	heating boiler	х	х	x	х	x	x	х	X	X
25	glazing	multi glazing	x	х	x	х	х	х	х	х	х
30	floor	floor with insulation				х	x	x	x	x	X
30	external wall	ext wall insulation					х			x	х
30	roof	roof insulation				х	х	x	х	x	х
60	floor	cellar wood (load bearing)	х								
70	external wall	ext wall cement							х		
90	external wall	ext wall brick (load bearing)	х	х	х	х		x			
100	floor	cellar natural stone (load bearing)		х	х						
120	roof	roof wood chairs	х	х	х						

Pre-analysis

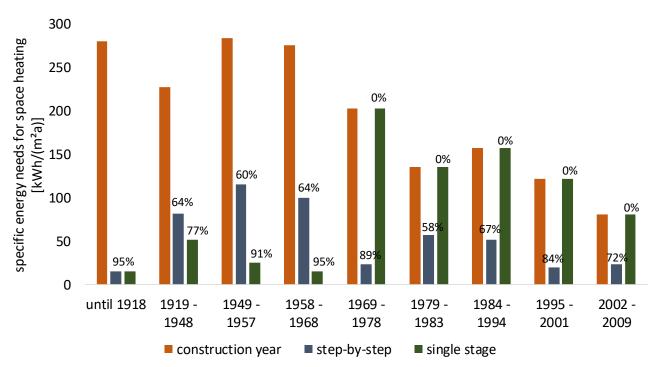
Relevant parameters: building element's material and it's lifetime

Y=yes, the building element has the corresponding building material N=no, the building element does not have the corresponding building material

Building element	Building material	Material's lifetime [yr]	until 1918	1919- 1948	1949 - 1957	1958 - 1968	1969 - 1978	1979 - 1983	1984 - 1994	1995 - 2001	2002- 2009
windows	multi glazing	25	У	У	у	У	у	у	У	у	У
floor	insulation	30	n	n	n	У	У	У	у	у	У
external wall	insulation	30	n	n	n	n	У	n	n	у	У
roof	insulation	30	n	n	n	У	у	у	у	у	у
floor	wood (load bearing)	60	у	n	n	n	n	n	n	n	n
external wall	cement	70	n	n	n	n	n	n	у	n	n
external wall	wood	70	n	n	n	n	n	n	n	n	n
windows	single glazing	80	n	n	n	n	n	n	n	n	n
external wall	brick (load bearing)	90	У	У	У	У	n	у	n	n	n
roof	cement reinforced	100	n	n	n	n	n	n	n	n	n
floor	natural stone (load bearing)	100	n	У	У	n	n	n	n	n	n
roof	wood chairs	120	У	у	у	n	n	n	n	n	n

Table 1: Characterization of the reference buildings - building elements, building material and material lifetime (for each building vintage, a reference buildings for single family houses in Germany).

Source: own table, based on (TABULA and EPISCOPE project, 2016) and (Pfeiffer et al., 2010)

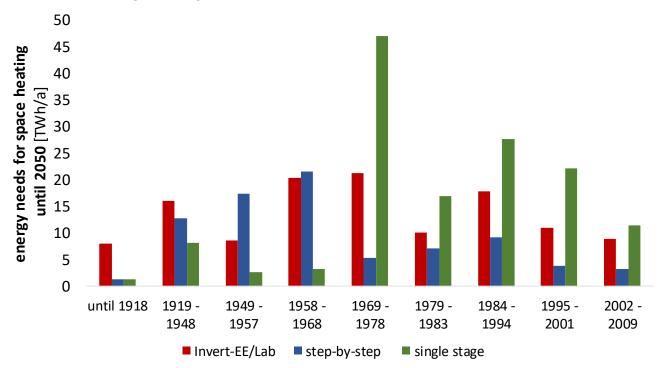

Year of the last renovation step (step-by-step and single stage concept)

Building vintage		until 1918	1919 - 1948	1949 - 1957	1958 - 1968	1969 - 1978	1979 - 1983	1984 - 1994	1995 - 2001	2002 - 2009
Construction year of reference building		1890	1935	1955	1965	1975	1980	1990	2000	2005
	Roof	2040	no renovation	no renovation	2025	2035	2040	2050	2030	2035
Stop by stop	Floor	2040	2035	no renovation	2025	2035	2040	2050	2030	2035
Step-by-step	External Wall	2040	2025	2045	no renovation	2035	2050	no renovation	2030	2035
	Window	2040	2035	2030	2040	2050	2030	2040	2050	2035
Single stage	all building elements	2050	2015	2035	2045	no renovation	no renovation	no renovation	no renovation	no renovation

Table 3: Last renovation year

- Specific energy needs in kWh/(m²a) of the construction year and after renovation: step-by-step and single stage concepts (for each building vintage)
- Energy savings (%) based on the energy demand in the construction year

Graph 2: Energy needs (before and after renovation) and energy savings according to both step-by-step and single stage concept, for each building vintage


- Specific energy needs for space heating in kWh/(m²a) with step-by-step concept, single stage concept and model Invert/EE-Lab
- Reference building based on the construction year

Graph 3: comparison of specific energy needs for space heating in $kWh/(m^2a)$ between step-by-step concept, single stage concept and Invert/EE-Lab model, for a reference building of each building vintage (before 1918 until 2009)

- ▶ The total energy needs for space heating in TWh/a in 2050:
 - 122 TWh/a (Invert-EE/Lab)
 - 81 TWh/a (step-by-step)
 - 140 TWh/a (single stage)

Graph 4: comparison of total energy needs for space heating TWh/a between step-by-step concept, single stage concept and Invert/EE-Lab model, for each building vintage

Conclusion

Period of time to complete first renovation cycle according to materials lifetime:

- non-insulated building elements need longer period to perform the first renovation cycle-> because of insulation lifetime (25-30 years)
- after the first renovation cycle was completed, the subsequent renovation cycles happen more frequently

Comparison between both concepts:

- step-by-step concept: faster adaptation of the building elements to the building code in force as insulated building elements need shorter period of time to perform the next renovation cycle than non-insulated ones
- single stage concept: building element might not have reached its end-of-life by the time of renovation and building's energy performance remains constant over a longer period of time

Upscale and comparison with Invert-EE/Lab (SET-Nav Scenario):

- distribution of buildings, in terms of number of buildings and their different energy needs, becomes a relevant parameter
- step-by-step and single-stage present plausible results when compared to the Invert-EE/Lab Model
- the step-by-step approach resulted in lower energy demand than the single stage approach (comparison until 2050)

Limitations and next steps

Limitations

- reference buildings (described according to the chosen database)
- further: sensitivity analysis
 - reduced or increased time intervals between renovation in the single-stage concept
 - limited information in old building codes for existing buildings
 - we assume that in the future, benchmarks for existing buildings will follow the same threshold as for new buildings
- choice of the step-by-step renovation measures -> renovation packages

Next steps

- integration of replacement of heating systems with hot water preparation;
- considering a more realistic distribution of the building elements' lifetimes, e.g. by using a
 Weibull distribution (as also done in the model Invert/EE-Lab);
- empirical evaluation of the historical renovation cycles;
- economic assessment:
 - include accurate estimation of investment costs
 - include investment costs as decision parameter for a deep renovation
 - economic consequences of not reaching materials end-of-life should be taken into account (rest-value of material)

MOV		but ly		1) buildi		Linux	
- bu	A- 1890 .	V (7)2600	roof e	×4. Wall	floor	HWB	
	B-1935		×	×	X	273	
	C-1955		>	~	×	193	
	0-1965 1824			X	~	162	
	E-1975			X		85	
	G-1990	\ \tag{1}	×	×	×	118	
t t	4-2000	N ×		\ X	X	177	
	2005	1 ×	\ ×	\ ×	- >	72	
0	ab 200(2015) 1- identificar	medi q	nais a	lenentos	foram	72 saviner	

Building vintage		until 1918	1919 - 1948	1949 - 1957	1958 - 1968	1969 - 1978	1979 - 1983	1984 - 1994	1995 - 2001	2002 - 2009
construction year	[kWh/(m²a)]	280	227	284	275	203	135	157	122	81
step-by-step	[kWh/(m²a)]	15	82	115	100	23	57	52	20	23
single stage	[kWh/(m²a)]	15	52	25	15	203	135	157	122	81
Energy savings step-by-step	[%]	95	64	60	64	89	58	67	84	72
Energy savings single stage	[%]	95	77	91	95	0	0	0	0	0

