Industrial On-Site Generation of Electricity: Relevance and Potential

Patrick Dossow, M. Sc. 26.08.2019

FÆ

IAEE 2019 - Ljubljana

PI

0000

0000

2019

0000

0000

A high relevance of industrial on-site generation in Europe is determined

Differences on a National Level (2017)

- Share of on-site generation varies between 7 % and 68 %
- Differences in the extent of industrial on-site generation are mainly due to resource availability, industrial structure and national regulatory conditions

Share of electricity consumption in industry

Differences on a National Level (2017)

- Share of CHP-systems varies between 45 % and 99 %
- Differences in the extent of industrial on-site generation are mainly due to resource availability, industrial structure and national regulatory conditions
- Share of fossil fuels varies between 20 % and 85 %

Share of industrial on-site generation

A heterogeneous generation structure between countries is apparent

Share of industrial on-site generation

Key Findings and Implications

- Generally high shares of CHP-systems compared to generators of public supply
- Generally high shares of fossil fuels compared to generators of public supply
- National regulations significantly determine the extent of industrial on-site generation
- Considerably high amounts of full load hours without any relation to electricity market prices

Changes in electricity market prices do not affect industrial on-site generators

- Fossil fuel based industrial power plants operate during times of high shares of renewables
 - For the future electricity system, industrial on-site generation represent an CO₂-emitting element separated from the markets, which will not diminish through low-cost renewables

On-site generating plants operate fundamentally different than electricity generators of public supply

Today's Agenda

Part 1 1.1 1.2 Part 2 2.1 2.2

Satus Quo of Industrial On-Site Generation

European Situation and Characteristics

Differences on a National Level

Potential of Market Integration

Basic Concept and Integration Procedure

Results and Consequences

Current System Design

• Industrial on-site generators operates with no regard to wholesale electricity markets

Industrial on-site generation

• From a overall system perspective, electricity generation costs are **not** minimised due to this separation

Concept of Market Integration

- Previously on-site generated electricity can be purchased at the wholesale market
- Free generating capacities in industry can be offered at the wholesale market
- For CHP-systems, heat is produced separately whenever on-site generation is paused
- Some former market participants are now forced to purchase their electricity elsewhere

Industrial on-site Wholesale generation electricity market

Wholesale

electricity market

₽₹

Methodical Procedure

Real generation load profiles of industrial powe plants are combined with marginal costs of electrici generation in industry

Real bidding curves are modified hourly to integra on-site generation into the spot market

New market prices are determined resulting in a new generation structure each hour of the year

Resulting implications and conclusions are discussed

Consequences of market integration depend on national characteristics

Current System Design

 Industrial on-site generators operates with no regard to wholesale electricity markets

Industrial on-site generation

• From a overall system perspective, electricity generation costs are **not** minimised due to this separation

Concept of Market Integration

- Previously on-site generated electricity can be purchased at the wholesale market
- Free generating capacities in industry can be offered at the wholesale market
- For CHP-systems, heat is produced separately whenever on-site generation is paused
- Some former market participants are now forced to purchase their electricity elsewhere

Industrial on-site Wholesale generation electricity marke

Wholesale

electricity market

₽₹

Methodical Procedure

Consequences of market integration depend on national characteristics

Needed data for integration:

- National statistical data regarding the amount and composition of industrial on-site generation is needed
- National generation load profiles of a representative amount of industrial power plants are needed
- National spot market bidding curves of each hour of the year are needed
 - Sufficiently accurate data is so far available for Germany only

Market integration is conducted for Germany as an example

Needed data for integration:

- National statistical data regarding the amount and composition of industrial on-site generation is needed
- National generation load profiles of a representative amount of industrial power plants are needed
- National spot market bidding curves of each hour of the year are needed
 - Sufficiently accurate data is so far available for Germany only

Market integration is conducted for Germany as an example

Results for Germany, 2017

Changes in electricity generation structure	Market price ΔMCP	Electricity generation costs Δc_{var}	CO ₂ emissions Δm_{CO_2}
 Some of the costly industrial plans are replaced Some free capacities of inexpensive plants are sold Competition in the market is increased 	+ 2 €/MWh		

 \Rightarrow 11 % of the previously on-site generated electricity is now replaced by market purchases

- The increased demand causes wholesale electricity prices to rise
 - The increased competition causes overall electricity generation costs to drop
 - Some of the industrial plants are replaced by high-emission generators of public supply

Market integration is conducted for Germany as an example

Results for Germany, 2017

Changes in electricity generation structure	Market price ΔMCP	Electricity generation costs Δc_{var}	$CO_2 \text{ emissions} \Delta m_{CO_2}$
 Some of the costly industrial plans are replaced Some free capacities of inexpensive plants are sold Competition in the market is increased 	+ 2 €/MWh		

Consequences

- Costs for electricity consumers generally increase
- Electricity generation costs decrease in general and in particular for the industrial sector
- CO₂ emissions generally increase for the current market situation

Electricity system framework and national regulations determine the concrete form of consequences

Consequences of market integration vary greatly with changing circumstances

Summary and Prospects

European Status Quo

- Industrial on-site generation plays a significant role in each of the investigated countries
- National differences concerning diverse generation structures are linked to regulatory conditions and availability of energy sources
- Separation of industrial on-site generators and generators of public supply does not lead to minimised generation costs nor minimised emissions

Share of national overall electricity generation

‡€

Potential of Market Integration

- The integration of on-site generation into the wholesale market leads to minimised overall generation costs
- Due to a general increase in electricity demand, wholesale market prices rise on average
- In the example of Germany, CO₂ emissions are generally increased
- Outcome of the market integration approach highly depends on market conditions and national regulations

The future role of industrial on-site generation remains controversial

Patrick Dossow, M. Sc.

Researcher

FfE - Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49 (0)89 15 81 21–63 Email: pdossow@ffe.de

Dr. –Ing. Serafin von Roon

Managing Director FfE - Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49 (0)89 15 81 21– 51 Email: sroon@ffe.de

Andrej Guminski, M. Sc. Researcher

Email:

FfE - Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49 (0)89 15 81 21–34

aguminski@ffe.de

FfE - Forschungsgesellschaft für Energiewirtschaft mbH Am Blütenanger 71 80995 Munich – Germany Tel.: +49 (0)89 15 81 21 – 0 Email: <u>info@ffe.de</u> Internet: <u>www.ffegmbh.de</u> Twitter: @FfE_Muenchen

FfE