Manuel Eising, European Institute for Energy Research (EIFER), Karlsruhe Hannes Hobbie, Chair of Energy Economics, TU Dresden

Effects of the Technological Capacity Mix on Regional Market Values in Germany

Offshore vs. Onshore Wind Energy

Agenda

- 1 Motivation and Research Questions
- 2 Fundamental Market Model Applied
- 3 Technological and Regional Driven Value Factor Development until 2035
- 4 Key Findings and Conclusion

Enormous drop in generation costs

Levelized cost of electricity (LCOE) of renewables have massively decreased

Source: IRENA (2018): Renewable Power Generation Costs in 2017; Figure 2.14 Global weighted average CSP, solar PV, onshore and offshore wind project LCOE data to 2017 and auction price data to 2020, 2010-2020

Volatility of generation and prices

For economic assessment it matters when electricity is produced ...

... but LCOE do not consider volatility of generation and prices over time

- Do not compare LCOE of different technologies without considering the time when electricity is produced
- Do not compare LCOE with average wholesale prices but its generation-weighted price, the market value

Market value assessment becomes crucial while values decrease

Historical evolution of wind market values

Year	Market value [€/MWh]	Average price [€/MWh]	Value factor
2001	23,33	24,06	0,97
2002	21,57	22,64	0,95
2003	26,82	29,47	0,91
2014	28,03	32,76	0,86
2015	26,80	31,63	0,85
2016	25,03	28,98	0,86
2017	27,95	34,19	0,82
2018	38,16	/ 44,47	= 0,86

Calculation of market values and value factors

(1) Value factor:
$$VF^{Wind} = \frac{\bar{p}^{Wind}}{\bar{p}}$$

(2) Market value:
$$\bar{p}^{Wind} = \frac{\sum_{t=1}^{T} g_t^{Wind} * p_t}{\sum_{t=1}^{T} g_t^{tech}}$$

(3) Average wholesale price:
$$\bar{p} = \sum_{t=1}^{T} \frac{p_t}{T}$$

 p_t hourly wholesale price

 g_t^{Wind} hourly wind generation

- During hours of high wind feed-in prices depress (merit-order effect)
- Hence, the relative value of wind power drops as their market share increases

Source: Own calculation based on German day-ahead price data and feed-in time series

Deriving two research questions

'Cannibalization effect' of increasing wind shares

Pair-wise correlation depending on site distance

Which fundamental factors drive the market value development of onshore/offshore wind

How do regional wind pattern affect regional market values

Agenda

- 1 Motivation and Research Questions
- 2 Fundamental Market Model Applied
- 3 Technological and Regional Driven Value Factor Development until 2035
- 4 Key Findings and Conclusion

Which fundamental factors drive the market value development of onshore/offshore wind?

Scenario framework: Effects of the Technological Capacity Mix

ELTRAMOD calculates cost minimized power plant dispatch and market prices

Effects of the Technological Capacity Mix on Regional Market Values

Dispatch model ELTRAMOD

Target function:

Minimization of total system costs

Spatial resolution

Data input:

- Power plant characteristics
- Fuel and CO₂ allowances prices
- Load of demand and VRE feed-in of Germany's neighbours (8760h)

Restrictions:

- Electricity balance
- Must-run requirements for CHP
- Ramping constraints
- NTC restrictions

Model Output

Hourly plant dispatch
Commercial flows
Curtailment

Welfare

Hourly power market prices

+

Regional time series

Evolution of market values

Agenda

- 1 Motivation and Research Questions
- 2 Fundamental Market Model Applied
- 3 Technological and Regional Driven Value Factor Development until 2035
- 4 Key Findings and Conclusion

Capacity mix impacts value factors

Wind capacity mix and scenario framework

Development of value factors

 Higher offshore wind shares can reduce overall wind power volatility

This mitigates the value drop of offshore and onshore wind as well as PV

Generation intermittency drops value factors

Power duration curves

Development of value factors

2. PV and onshore wind are more volatile than offshore wind

! Offshore wind value factors resist more against increasing market shares

Analysing spatial wind generation patterns becomes crucial

Regional distribution of wind value factors

- 1. Increasing spatial spread until 2035
- 2. Higher shares of offshore wind power reduces spatial differences
- 3. High wind power density in the coastal hinterland
- 4. Steadier feed-in at offshore and nearshore locations

Analysing spatial wind generation patterns becomes crucial

Regional distribution of wind value factors

- 1. Increasing spatial spread until 2035
- 2. Higher shares of offshore wind power reduces spatial differences
- 3. High wind power density in the coastal hinterland
- 4. Steadier feed-in at offshore and nearshore locations

Agenda

- 1 Motivation and Research Questions
- 2 Fundamental Market Model Applied
- 3 Technological and Regional Driven Value Factor Development until 2035
- 4 Key Findings and Conclusion

Key Findings and Conclusion

- 1. Onshore vs. Offshore wind capacity mix:
 - ▶ High shares of offshore wind in the capacity mix seem to be beneficial for both, the market value of onshore as well as offshore wind generation.
- 2. Cannibalization effect:
 - ▶ Due to stronger feed-in intermittency onshore wind value factors decrease stronger then offshore wind
- 3. Evolution of regional market values:
 - Increasing wind market shares foster differences between regional value factors throughout Germany.

Analysing site-specific (regional) market values becomes significantly more important for system planners as well as wind farm operators

Thank you...

Contact

Manuel Eising

Policy Analysis and Energy Market Studies European Institute for Energy Research (EIFER) manuel.eising@eifer.uni-karlsruhe.de

Emmy-Noether-Straße 11 76131 Karlsruhe Germany www.eifer.org

Need for market value assessment

Three perspectives

1. Investors perspective: Where to invest and which plant design to choose? Achieve additional profits from site over-performance Awarded bid price Reference market value_{Technology} Sliding market premium = Site-specific market value_{Technology}

Three deployment strategies to stabilize market values

Level out VRE feed-in fluctuation to mitigate the value drop

Source: Own visualization, calculation of pair-correlations over distances based on data from DWD (German Meteorological Office)

Literature research

Deployment strategies

1. Technological diversity

- Optimised portfolios can flatten the aggregated VRE-feed-in
- Deployment diversification between offshore and onshore wind as well as PV and other VRE

2. Technological design

- Higher hub heights and advanced performance curves stabilize wind power generation
- Tilt angle and east-to-west orientation impact the PV feed-in

3. Geographical diversity

- Geographically distributed VRE generation
- Promising potential especially for wind energy due to decreasing pair correlation of generation over the distance

Strategy application in dispatch models

A46. a	1.	2	2.	
Author		PV	Wind	
Obersteiner and Saguan (2011)	х			х
Höfling (2013)	X			
Schaber (2014)	X			
Gerlach and Pape (2014)		X		
Fernahl et al. (2015)	X			
Hartner et al. (2015)	X	X		
Winkler et al. (2016a)	X			
Lamont (2008)	X			
Mills and Wiser (2012)	X			
Nicolosi (2012)	X			
Hirth (2013)	X			
Winkler et al. (2015)	X			
Hirth (2015)	X		X	
Mills and Wiser (2015)	X			x
Hirth and Müller (2016)			X	
Hirth (2016)	X			
Simshauser (2018)	X			
Johansson and Thorson (2016)			X	
Dalla Riva (2016)			X	
May (2017)			X	

Research gap: Impact of the wind capacity mix on overall as well as regional market values

Capacity development

Germany

Figure A.20: Capacity development in Germany, according to ENTSO-E (2016b) and Bundesnetzagentur (2016a,b)

Neighbouring Countries

Figure A.21: Capacity development in neighbouring countries, according to ENTSO-E (2016b,a)

Price assumptions

Fuel and CO2 prices

Table A.4: Fuel [EUR/MWth] and CO₂ [EUR/t] prices

Fuel	2012	2015	2025	2035
Lignite	3.10	3.10	3.10	3.10
Gas	25.28	20.07	29.82	31.00
Oil	53.42	28.00	55.75	60.19
Coal	13.30	9.14	9.37	10.20
Uranium	2.50	2.50	2.50	2.50
CO_2	7.51	7.65	21.09	32.00

Schubert (2016), energate (2016) and Bundesnetzagentur (2016b)

Generation intermittency

Generation duration curves

Figure 8: Power duration curve

Historical data

German value factors

Market share			Value factor						
		Onshore	Offshore				Onshore	Offshore	
Year	Wind	wind	wind	PV	Year	Wind	wind	wind	PV
2000	1,60%	1,60%		0,00%	2000				
2001	1,80%	1,80%		0,00%	2001	0,97	0,97		1,21
2002	2,70%	2,70%		0,00%	2002	0,95	0,95		1,35
2003	3,10%	3,10%		0,10%	2003	0,91	0,91		1,33
2004	4,10%	4,10%		0,10%	2004	0,98	0,98		1,22
2005	4,40%	4,40%		0,20%	2005	0,94	0,94		1,18
2006	4,80%	4,80%		0,30%	2006	0,90	0,90		1,30
2007	6,20%	6,20%		0,50%	2007	0,89	0,89		1,18
2008	6,30%	6,30%		0,70%	2008	0,93	0,93		1,25
2009	6,50%	6,50%		1,10%	2009	0,93	0,93		1,16
2010	6,00%	6,00%		1,90%	2010	0,95	0,95		1,11
2011	8,00%	8,00%		3,20%	2011	0,92	0,92		1,11
2012	8,10%	8,10%		4,20%	2012	0,88	0,88		1,04
2013	8,10%	8,00%	0,10%	4,90%	2013	0,85	0,86	0,89	0,98
2014	9,10%	8,90%	0,20%	5,70%	2014	0,86	0,86	0,91	0,98
2015	12,30%	11,00%	1,30%	6,00%	2015	0,85	0,83	0,88	0,98
2016	12,10%	10,20%	1,90%	5,90%	2016	0,86	0,85	0,93	0,93
2017	16,10%	13,40%	2,70%	6,00%	2017	0,82	0,80	0,88	0,93
2018	17,50%	14,50%	3,00%	7,10%	2018	0,86	0,84	0,93	0,98

ELTRAMOD calculates cost minimized power plant dispatch and market prices

Effects of the **Technological Capacity Mix** on Regional Market Values

Dispatch model ELTRAMOD

Target function:

Minimization of total system costs

Spatial resolution

Data input:

- Power plant characteristics
- Fuel and CO₂ allowances prices
- Load of demand and VRE feed-in of Germany's neighbours (8760h)

Restrictions:

- Electricity balance
- Must-run requirements for CHP
- Ramping constraints
- NTC restrictions

Results

Hourly plant dispatch

Hourly power market prices

Commercial flows

Curtailment

Total generation costs

Welfare

Market Value Assessment

- Value factor
 development per
 technology
- 2. Regional value factor distribution

Can the fundamental model explain German power prices?

KPIs and price duration curve for 2015 as **benchmark**

KPIs					
	€/MWh				
MAE sort.	4.02				
RSME sort.	8.27				
Ø ELTRAMOD price	28.24				
Ø real price	31.63				

Comments

- Modelled price match the price duration curve well
 - Slight underestimation of base load prices
 - Overall price level estimation fits
- ELTRAMOD prices include inaccuracies of modelled VRE feed-in

