

Evaluating the Use of Bioenergy With Carbon Capture and Storage to Achieve Energy Transition and Decarbonization

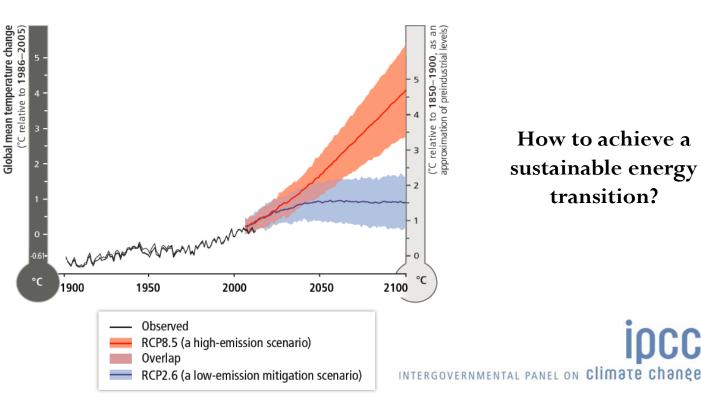
Sandrine Selosse

MINES ParisTech, PSL Research University, Centre for Applied Mathematics Chair Modeling for Sustainable Development

August 28th, 2019

16th IAEE Conference – Ljubljana - Slovenia

Long-term possible low carbon futures of the energy system

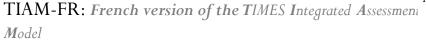


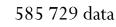
Climate constraints

- 2°C objective (emissions targets [Gt CO₂], radiative forcing [W/m²], atmospheric concentration [ppm])
- Paris Agreement (NDCs)

How to achieve a sustainable energy transition?

iocc

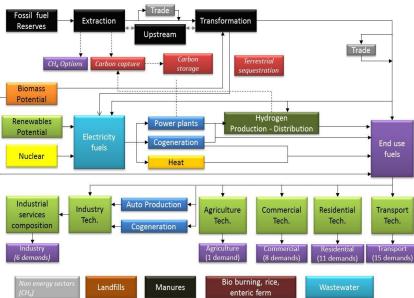

PSL Modelling approach



Optimization, linear programming Minimization of the total discounted cost of the system

Bottom-up

Long-term: **2010**-2100 Multi-regional:15 regions (+T-ALyC) Multi-sectors: 6 sectors 42 demands

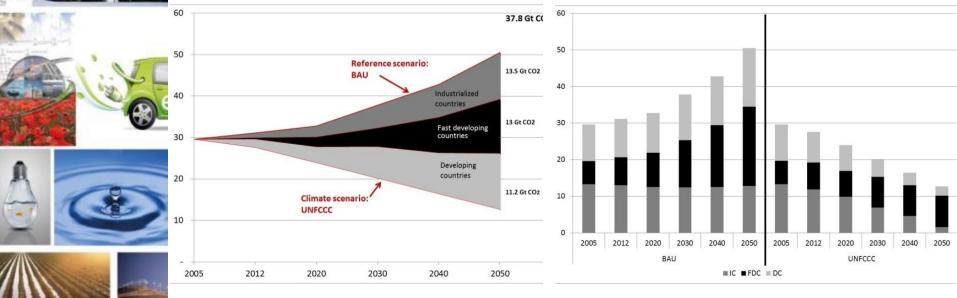


11 646 commodities (about 770/region)39 817 technologies (about 2 500/region)

 $NPV = \sum_{r=1}^{R} \sum_{y \in YEARS} (1 + d_{r,y})^{REFYR-y} * ANNCOST(r, y)$

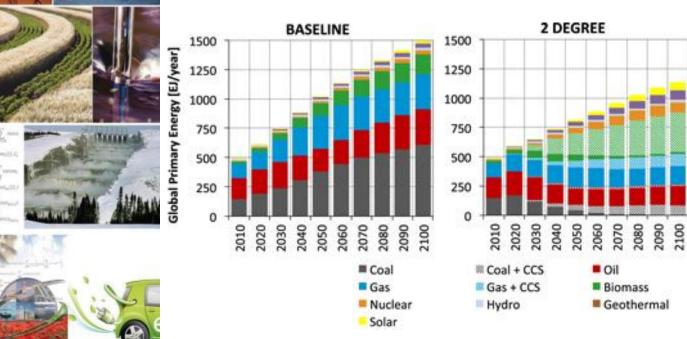
Where NPV is the net present value of the total cost for all regions over the projected period; ANNCOST (r,y) is the total annual cost in region r and year y; dr,y is the discount rate; REFYR is the reference year for discounting; YEARS is the set of years and R is the set of regions (15 regions)

Long-term possible low carbon futures of the energy system



- 2°C objectives (emissions targets [Gt CO₂], radiative forcing [W/m²], atmospheric concentration [ppm])
- Paris Agreement (NDCs)

Regional contribution to the mitigation effort


PSL Technological choices to a climate stabilization

2 DEGREE NO CCS

Biomass + CCS

Oil + CCS

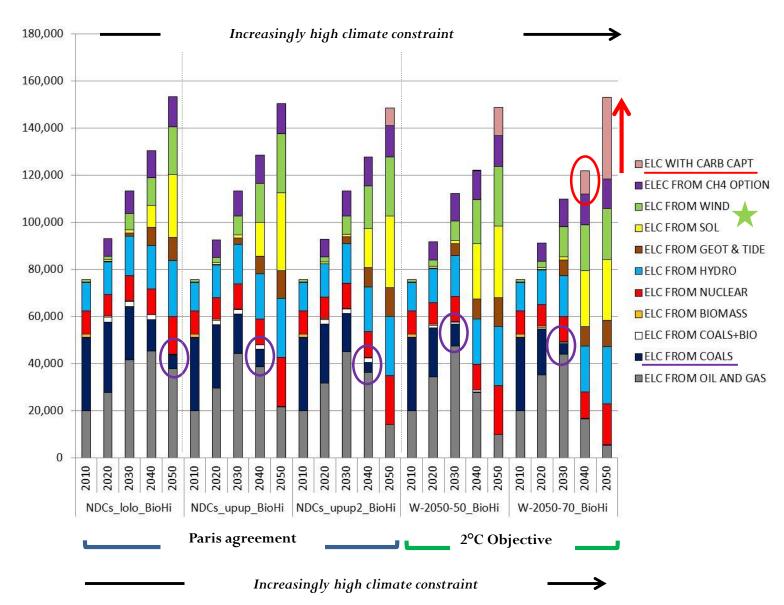
Wind 1

Muratori et al. (2016) - http://iopscience.iop.org/article/10.1088/1748-9326/11/9/095004

AR5 : 101 of the 116 scenarios with a limited atmospheric concentration at 430-480 ppm rely on BECCS

About 67% of these have a BECCS share in primary energy exceeding 20% in 2100 (Fuss et al. (2014), Nature Climate Change)

PSL World electricity production (PJ)

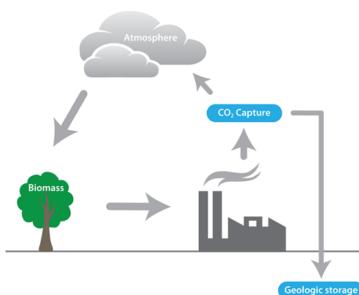


What low carbon and sustainable energy future?

Ambitious climate targets achieved if:

- Contribution of developing countries
- Ambitious contribution of emerging countries
- Early almost total decarbonization of the industrialized countries
- Major deployment of the CCS
- Use of negative emissions with BECCS

PSLM What low carbon and sustainable energy future?



- Ambitious climate targets achieved if:
 - Contribution of developing countries
 - Ambitious contribution of emerging countries
 - Early almost total decarbonization of the industrialized countries
 - Major deployment of the CCS
 - Use of negative emissions with BECCS

Technological and resource constraints

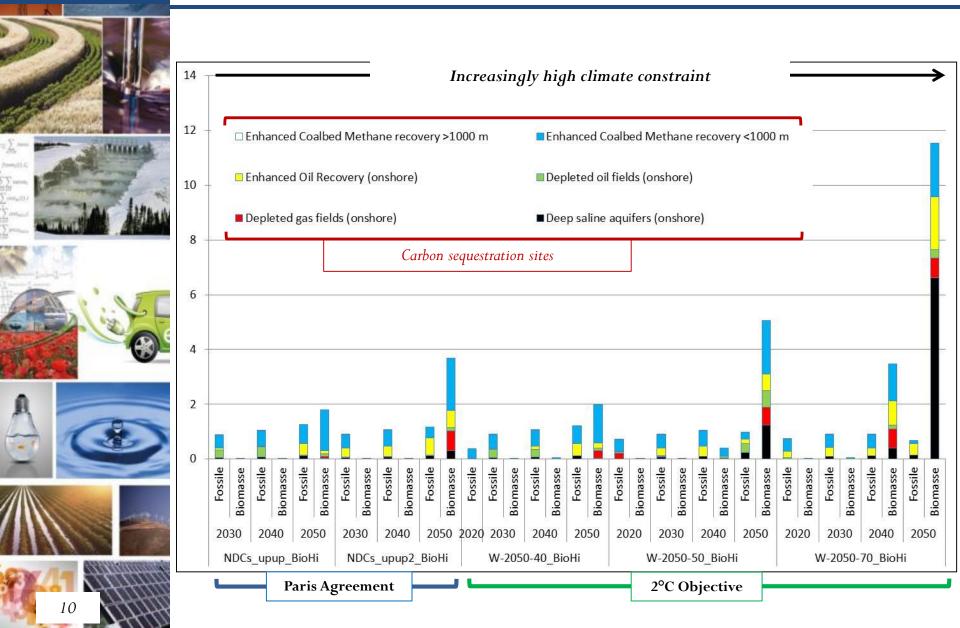
- Availability of technology
 - Carbon capture and storage (CCS) ٠
 - Availability of onshore storage
- Resource potential
 - Carbon storage
 - **Biomass resources**

What low carbon and sustainable energy future?

Ambitious climate targets achieved if:

- Contribution of developing countries
- Ambitious contribution of emerging countries
- Early almost total decarbonization of the industrialized countries
- Major deployment of the CCS
- Use of negative emissions with BECCS

Technological and resource constraints


- Availability of technology
 - Carbon capture and storage (CCS)
 - Availability of onshore storage
- Resource potential
 - Carbon storage
 - Biomass resources

Achieving energy transition with negative emissions:

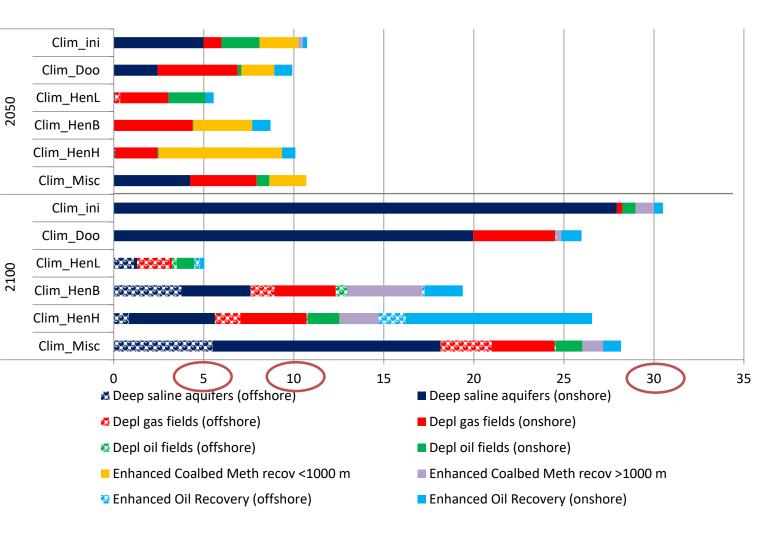
how carbon storage and biomass resource potentials can impact the development of BECCS

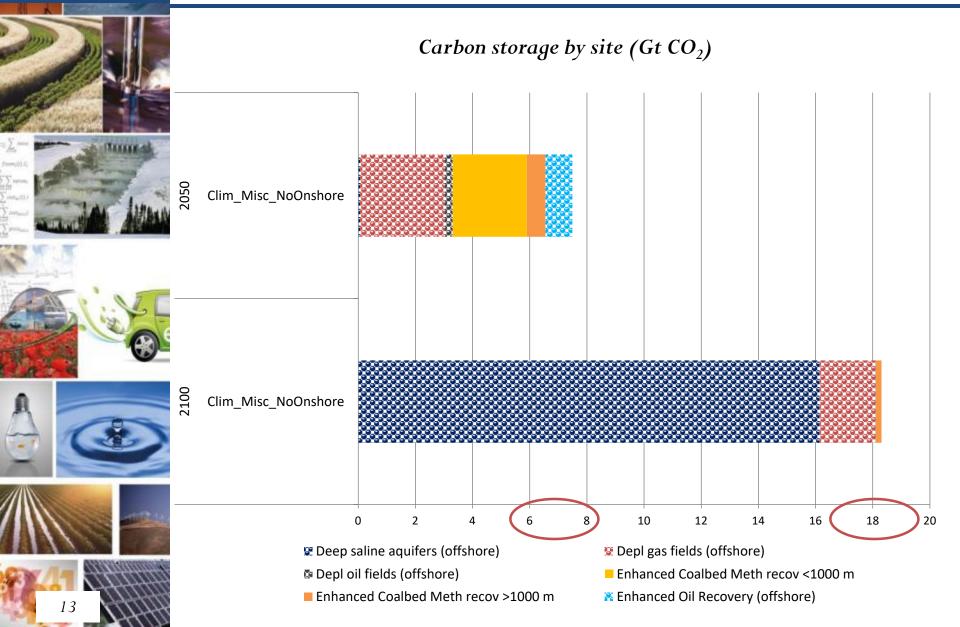
The question of carbon storage.... (Gt)

PSL Analysis of the carbon storage potential

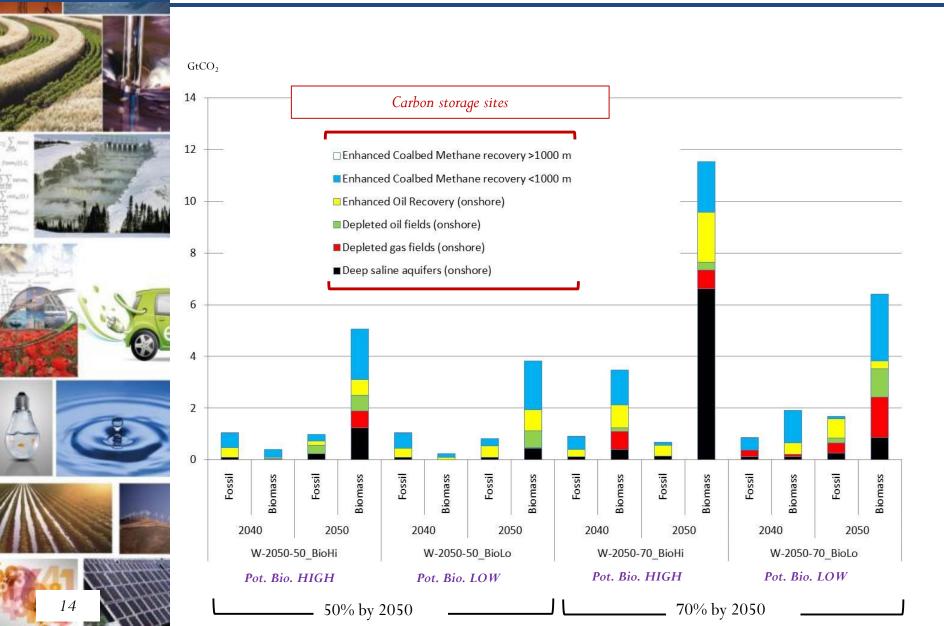
- Scenario analysis (under climate constraints)
 - Carbon storage potentials
 - Initial TIAM <u>9,392 Gt</u>
 - Collection of various databases, reports, etc. <u>10,142 Gt</u>
 - Ref. Dooley <u>10,655 Gt</u>
 - Ref. Hendriks <u>572 Gt (Low)</u>
 <u>1,706 Gt (Best)</u>
 <u>5,864 Gt (High)</u>
 - Onshore/offshore determination

Carbon storage by year to achieve the $2^{\circ}C$ objective (radiative forcing at 2,6 W/m² by 2100)




12

Sensitivity analyses on carbon storage by site and scenario (Gt CO_2)



Impact of an onshore storage ban on carbon storage an CCS deployment

Sensitivity analysis on biomass potential and impact on carbon storage

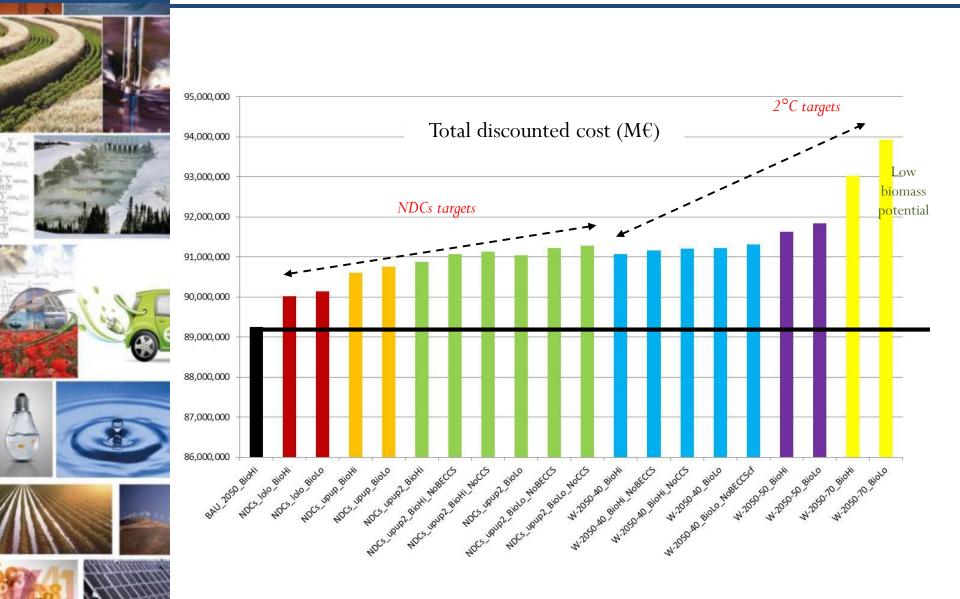
Alternatives low carbon pathways:

A joint impact analyzis of carbon storage and biomass potentials

Scenario	Targeted	Climate constraint	Carbon	Biomass 2050
	year		storage	potential
2050-70-ccsHi-BioMid			10,142 Gt	215 EJ
2050-70-ccsHi-BioHi				328 EJ
2050-70-ccsHi-BioLo				70 EJ
2050-70-ccsMid-BioMid			1,706 Gt	215 EJ
2050-70-ccsMid-BioHi	2050	70% GHG mitigation		328 EJ
2050-70-ccsMid-BioLo				70 EJ
2050-70-ccsLo-BioMid			572 Gt	215 EJ
2050-70-ccsLo-BioHi				328 EJ
2050-70-ccsLo-BioLo				70 EJ
2100-2D-ccsHi-BioMid			10,142 Gt	215 EJ
2100-2D-ccsHi-BioHi				328 EJ
2100-2D-ccsHi-BioLo				70 EJ
2100-2D-ccsMid-BioMid	2100	2°C temperature increase limit	1,706 Gt	215 EJ
2100-2D-ccsMid-BioHi				328 EJ
2100-2D-ccsMid-BioLo				70 EJ
2100-2D-ccsLo-BioMid			572 Gt	215 EJ
2100-2D-ccsLo-BioMHi				328 EJ
2100-2D-ccsLo-BioLo				70 EJ

The influence of carbon storage and biomass potentials in the future development of BECCS

16


Ambitious climate scenario - 70% GHG mitigation target		Biomass potential			
		High	Medium	Low	
Carbon storage potential	High	45% (BECCS: 70%)	39% (BECCS: 55.9%)	27% (BECCS: 18.1%)	
	Medium	45% (BECCS: 69.8%)	39% (BECCS: 56.3%)	27% (BECCS: 18.2%)	
	Low	33% (BECCS: 93.9%)	28% (BECCS: 76.7%)	15% (BECCS: 33.5%)	

Gt of negative emissions (CO2 sequestrated in 2050 from BECCS)

Ambitious climate scenario – 70% GHG mitigation target		Biomass potential			
		High	Medium	Low	
Carbon storage potential	High	12 Gt	8.8 Gt	2.8 Gt	
	Medium	12 Gt	8.9 Gt	2.8 Gt	
	Low	11 Gt	7.7 Gt	2.2 Gt	

Cost analysis of constraints

Carbon marginal cost (\$/tCO2)

Scenario

NDCs lolo BioHi 20 2030 NDCs lolo BioLo NDCs upup2 BioHi NDCs upup2 BioLo 2030 25 NDCs upup BioHi NDCs upup BioLo W-2050-40 BioHi 2030 30 W-2050-40 BioLo NDCs lolo BioHi 2050 NDCs lolo BioLo 35 W-2050-50 BioHi 2030 W-2050-50 BioLo W-2050-70 BioLo 2030 40 W-2050-70 BioHi 2030 50 NDCs upup BioHi 2050 75 NDCs upup BioLo W-2050-40 BioHi 90 2050 W-2050-40 BioLo NDCs upup2 BioHi 2050 95 2050 W-2050-50 BioHi 100 NDCs upup2 BioLo 2050 120 W-2050-70 BioHi W-2050-50 BioLo 2050 150 W-2050-70 BioLo 2050 420

Year

Carbon marginal cost

To conclude...

- A key measure of success is how far and how fast the Paris Agreement will encourage more ambitious actions
- Models like TIAM-FR constitute crucial tools to help policy-makers as regards long-term low carbon pathways but there is a need for:
 - Position of the envisioned future
 - Connect the proposed trajectories to the real
 - Anticipation and vision, based on short and long term consideration (and without disconnect them)
- Among the low-carbon technology options, CCS technologies are widely presented as a solution for achieving ambitious climate goals, particularly when associated with biomass
 - Deploying these technologies at this scale for mitigation purposes requires the implementation of incentive and regulation policies
 - Carbon storage capacities and particularly biomass potential can be a limiting factor for (BE)CCS deployment

University of Lubijana SEB SCHOOL OF SCONDANICS

sandrine.selosse@mines-paristech.fr

August 28th, 2019

16th IAEE Conference – Ljubljana - Slovenia