

Evaluation of the Need for Capacity Remuneration Mechanisms: Impact of Design Parameters and Key Assumptions

Steffen Kaminski, Hanspeter Höschle, Kris Poncelet, Erik Delarue

August 2019

Research Foundation Flanders Opening new horizons

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	000000	0000000	O	o
Outline					

- 1. Introduction
- 2. Research question
- 3. Methodology
- 4. Case study
- 5. Conclusions
- 6. Outlook

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
•	O	000000	0000000	O	o
Introdu	iction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
•	o	000000	0000000	O	o
Introdu	iction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
●	o	000000	0000000	O	o
Introdu	uction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
•	o	0000000	0000000	O	o
Introdu	iction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
●	o	000000	0000000	O	o
Introdu	uction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
●	o	000000	0000000	O	o
Introdu	uction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
●	o	000000	0000000	O	o
Introdu	uction				

- Due to concerns on generation adequacy, many European countries have installed or are planning to install a capacity remuneration mechanism (CRM)
- The element of uncertainty and risk has become an increasingly important element in the discussions surrounding CRMs
- If agents behaive risk-averse, private interests in an energy-only market diverge from the public interest [1]:
 - risk-averse generation company favour investing in less capacity than to rely on the highly uncertain revenues coming from price spikes during scarcity situations
 - from a public perspective, it is less costly to have a little bit of excess capacity than to have to pay the high social costs of load curtailment
- ⇒ Few researches have analyzed the performance of energy-only market designs and their alternative with a CRM while accounting for risk-averse behavior of investors [2, 3, 4]

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O		0000000	0000000	O	o
Resea	rch questions				

• Do possible **demand elasticities** (emergency measures, active demand response) diminish the need for additional capacity remunerations?

• How does the choice of the **target capacity demand** effects the generation adequacy and total system costs?

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O		0000000	0000000	O	o
Resea	rch questions				

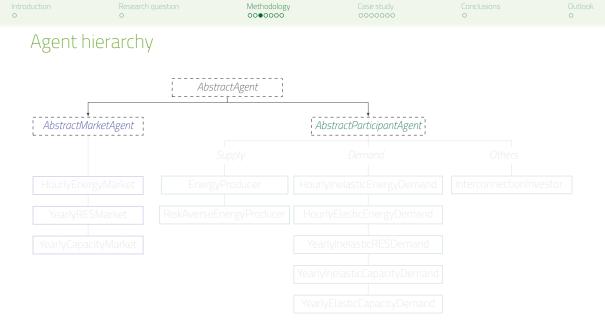
• Do possible **demand elasticities** (emergency measures, active demand response) diminish the need for additional capacity remunerations?

• How does the choice of the **target capacity demand** effects the generation adequacy and total system costs?

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	0000000	0	0

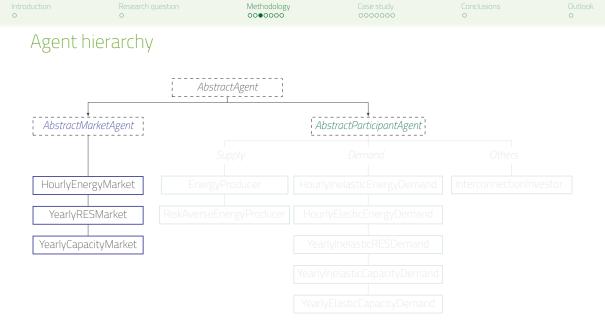
Energy poLicy DEcision Support Toolbox (ELDEST)

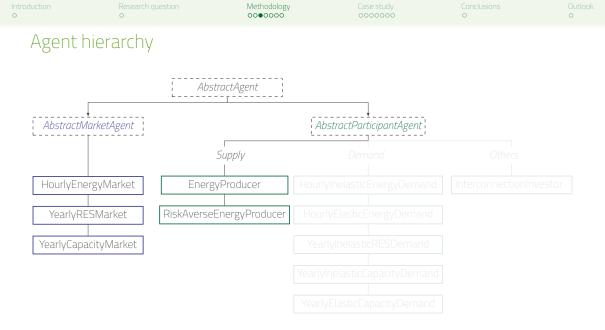
- dynamic long-term equilibrium (and agent-based) model for energy systems and markets
- data driven model generation ("plug and play" agents)
- equipped with versatile algorithms that match the challenges of the studied case
- solver independent (julia, JuMP)
- Link: https://www.energyville.be/en/research/eldest-energy-policy-decision-supporttoolbox

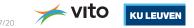


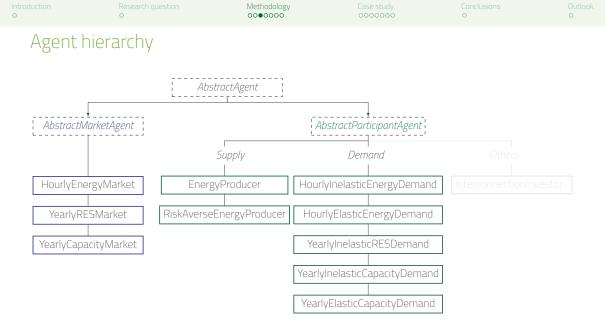
Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	000000	0000000	O	o
Model assu	umptions				

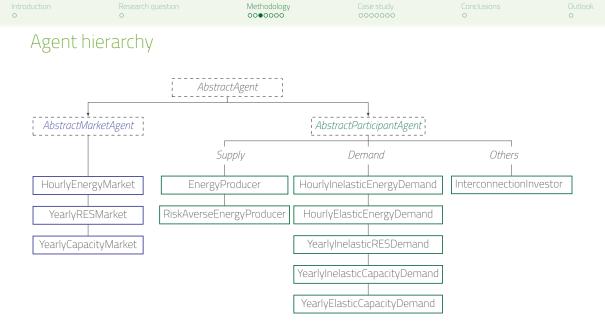
- no agent behaves strategically taking other agents decisions into account
- all agents are perceiving the same price (producer agents are price takers)
- no other market distortions (except capacity market and the price cap on energy market)











Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

Different agents with different objectives

AbstractMarketAgent

- Utility:
 - ► Minimize excess demand
- Decision variables:
 - Market price
- Set of Strategies:
 - Defined by price floor and cap

min Price · Volume s.t. Price floor ≤ Price ≤ Price cap

AbstractParticipantAgent

• Utility:

- Maximize Profit
- Decision variables:
 - Investment and market volumes

• Set of Strategies:

- Defined by technology
- Defined by economics

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

Different agents with different objectives

AbstractMarketAgent	AbstractParticipantAgent
 Utility: Minimize excess demand Decision variables: Market price Set of Strategies: Defined by price floor and cap 	 Utility: Maximize Profit Decision variables: Investment and market volumes Set of Strategies: Defined by technology Defined by economics
min Price · Volume s.t. Price floor ≤ Price ≤ Price cap	$\begin{array}{ll} \max_{\text{Volume, Investment}} & (\text{Price} - \text{Cost}_{\text{var}}) \cdot \text{Volume} \\ & - \text{Cost}^{\text{inv}} \cdot \text{Investment} \\ & \text{s.t.} \\ 0 \leq \text{Volume} & \leq \text{Investment} \end{array}$

vito

8/20

KU LEUVEN

Methodology 0000000	Case study 0000000	Conclusions O	Outlook o			
oducer						
$\equiv S^*$		$(\mathbf{OR}_{\beta} = \alpha - \frac{1}{\beta} \sum_{s \in S}$				
hent						
$S^* = \{s \in S \pi_s \le V @ \mathbb{R}_{\beta} \}$ $\pi_s = (\operatorname{Price}_s - \operatorname{Cost}_s^{\operatorname{Var}}) \cdot \operatorname{Volume}_s - \operatorname{Cost}_s^{\operatorname{inv}} \cdot \operatorname{Investment}$						
	$\sum_{s \in S^*} P_s \cdot \pi_s$ hent $S \pi_s \leq V@R_\beta\}$	$S \pi_{s} \leq V@R_{\beta}\}$	$S \pi_{s} \leq V@R_{\beta}\}$			

Volume_s, Investment $\in \mathbb{R}^+$

 $u_s, \in \mathbb{R}^+, \alpha \in \mathbb{R}$

ntroduction	Research question	Methodology	Case study	Conclusions	Outlook
0	0	0000000	0000000	0	0

Risk-averse Energy Producer

$$\max_{\text{Volume}_s,\text{Investment}} \text{CV} @ \mathsf{R}_\beta = \sum_{s \in S^*} P_s \cdot \pi_s$$

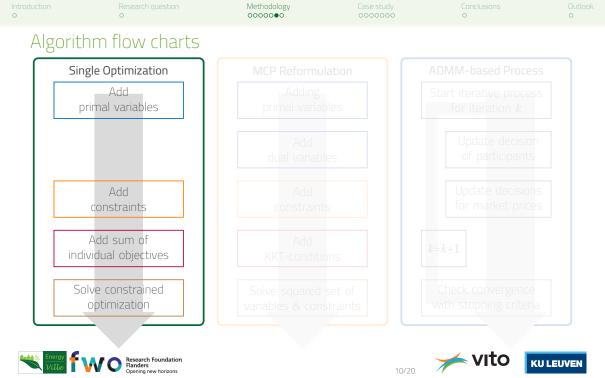
s.t.

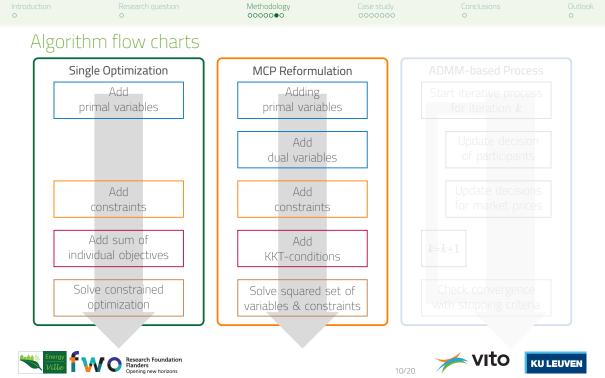
 $0 \leq \text{Volume}_s \leq \text{Investment}$

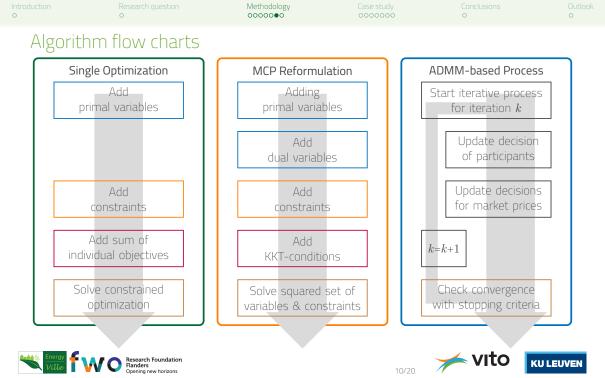
Endogenous formulation to determine the V@R and select the scenarios taken from [5]:

$$\max_{\text{/olume}_s,\text{Investment}} \text{CV}@R_\beta = \alpha - \frac{1}{\beta} \sum_{s \in S} P_s \cdot u_s$$

s.t.


 $u_s \ge \alpha - \pi_s$ $0 \le \text{Volume}_s \le \text{Investment}$

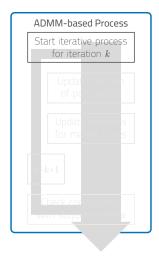

9/20


$$\begin{split} S^* &= \{s \in S | \pi_s \leq \mathsf{V} @ \mathsf{R}_\beta\} \\ \pi_s &= (\mathsf{Price}_s - \mathsf{Cost}_s^{\mathsf{var}}) \cdot \mathsf{Volume}_s - \mathsf{Cost}_s^{\mathsf{inv}} \cdot \mathsf{Investment} \\ \mathsf{Volume}_s, \mathsf{Investment} \in \mathbb{R}^+ \\ u_s, \in \mathbb{R}^+, \alpha \in \mathbb{R} \end{split}$$

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	0000000	0	0

• Risk-averse energy producer's update step:

 $\label{eq:Volume} \begin{array}{l} \text{Volume}_s^{k+1}, \text{Investment}^{k+1} = \underset{\text{Volume}_s, \text{Investment}}{\arg\max} \quad \text{CV}@\mathbb{R}_\beta - \text{Penalty} \end{array}$


with

$$\mathsf{Penalty} = \frac{\rho}{2} \cdot ||\mathsf{Volume}_s - (\mathsf{Volume}^k - \overline{\mathsf{Volume}}^k)||_2^2$$

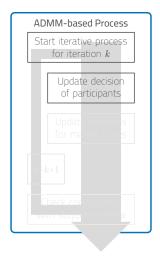
Market's update step

$$\mathsf{Price}_s^{k+1} = \mathsf{Price}_s^k - \rho \cdot \sum_{\forall \mathsf{acents}} \mathsf{Volume}_s^{k+1}$$

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	0000000	0	0

• Risk-averse energy producer's update step:

 $\text{Volume}_{s}^{k+1}, \text{Investment}^{k+1} = \underset{\text{Volume}_{s}, \text{Investment}}{\arg\max} \text{CV} @ \mathbb{R}_{\beta} - \text{Penalty}$


with

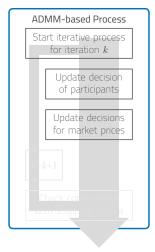
$$\mathsf{Penalty} = \frac{\rho}{2} \cdot ||\mathsf{Volume}_s - (\mathsf{Volume}^k - \overline{\mathsf{Volume}}^k)||_2^2$$

• Market's update step

$$\mathsf{Price}_{s}^{k+1} = \mathsf{Price}_{s}^{k} - \rho \cdot \sum_{\forall \mathsf{agents}} \mathsf{Volume}_{s}^{k+1}$$

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	0000000	0	0

• Risk-averse energy producer's update step:


 $\text{Volume}_{s}^{k+1}, \text{Investment}^{k+1} = \underset{\text{Volume}_{s}, \text{Investment}}{\arg\max} \text{CV} @ \mathbb{R}_{\beta} - \text{Penalty}$

with

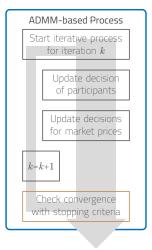
$$\mathsf{Penalty} = \frac{\rho}{2} \cdot ||\mathsf{Volume}_s - (\mathsf{Volume}^k - \overline{\mathsf{Volume}}^k)||_2^2$$

• Market's update step

$$\mathsf{Price}_s^{k+1} = \mathsf{Price}_s^k - \rho \cdot \sum_{\mathsf{Vagents}} \mathsf{Volume}_s^{k+1}$$

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	0000000	0	0

• Risk-averse energy producer's update step:


 $\text{Volume}_{s}^{k+1}, \text{Investment}^{k+1} = \underset{\text{Volume}_{s}, \text{Investment}}{\arg\max} \text{CV} @ \mathbb{R}_{\beta} - \text{Penalty}$

with

$$\mathsf{Penalty} = \frac{\rho}{2} \cdot ||\mathsf{Volume}_s - (\mathsf{Volume}^k - \overline{\mathsf{Volume}}^k)||_2^2$$

• Market's update step

$$\mathsf{Price}_s^{k+1} = \mathsf{Price}_s^k - \rho \cdot \sum_{\mathsf{Vagents}} \mathsf{Volume}_s^{k+1}$$

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	000000	0	0

- Greenfield study, optimization horizon 1 year
- Data
 - Load demand data ENTSO-E 2017 (3 representative days)
 - Peak hour considered with a weight of 1h
 - Wind and solar availability ELIA 2017 (3 representative days)
 - Technologies: Nuclear, CCGT, OCGT, Wind (on-, offshore), PV [7]
- Markets
 - Day-ahead (DA) market for energy
 - price cap at 3000€/MWh
 - Centralized capacity market (comparable to GB market)
 - Market for renewable energy certificates
 - demand set inelastic to 18.3% of the yearly energy demand
- Agents
 - One market and demand agent each market
 - one risk averse energy producer (Portfolio optimization)

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	000000	0	0

- Greenfield study, optimization horizon 1 year
- Data
 - Load demand data ENTSO-E 2017 (3 representative days)
 - Peak hour considered with a weight of 1h
 - Wind and solar availability ELIA 2017 (3 representative days)
 - Technologies: Nuclear, CCGT, OCGT, Wind (on-, offshore), PV [7]
- Markets
 - Day-ahead (DA) market for energy
 - price cap at 3000€/MWh
 - Centralized capacity market (comparable to GB market)
 - Market for renewable energy certificates
 - demand set inelastic to 18.3% of the yearly energy demand
- Agents
 - One market and demand agent each market
 - one risk averse energy producer (Portfolio optimization)

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	000000	0	0

- Greenfield study, optimization horizon 1 year
- Data
 - Load demand data ENTSO-E 2017 (3 representative days)
 - Peak hour considered with a weight of 1h
 - Wind and solar availability ELIA 2017 (3 representative days)
 - ► Technologies: Nuclear, CCGT, OCGT, Wind (on-, offshore), PV [7]
- Markets
 - Day-ahead (DA) market for energy
 - price cap at 3000€/MWh
 - Centralized capacity market (comparable to GB market)
 - Market for renewable energy certificates
 - demand set inelastic to 18.3% of the yearly energy demand
- Agents
 - One market and demand agent each market
 - one risk averse energy producer (Portfolio optimization)

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	000000	0	0

- Greenfield study, optimization horizon 1 year
- Data
 - Load demand data ENTSO-E 2017 (3 representative days)
 - Peak hour considered with a weight of 1h
 - Wind and solar availability ELIA 2017 (3 representative days)
 - ► Technologies: Nuclear, CCGT, OCGT, Wind (on-, offshore), PV [7]
- Markets
 - Day-ahead (DA) market for energy
 - price cap at 3000€/MWh
 - Centralized capacity market (comparable to GB market)
 - Market for renewable energy certificates
 - demand set inelastic to 18.3% of the yearly energy demand
- Agents
 - One market and demand agent each market
 - one risk averse energy producer (Portfolio optimization)

Introduction	Research question	Methodology	Case study		Outlook
0	0	000000	000000	0	0

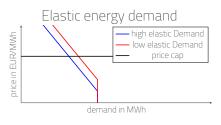
- Greenfield study, optimization horizon 1 year
- Data
 - Load demand data ENTSO-E 2017 (3 representative days)
 - Peak hour considered with a weight of 1h
 - Wind and solar availability ELIA 2017 (3 representative days)
 - ► Technologies: Nuclear, CCGT, OCGT, Wind (on-, offshore), PV [7]
- Markets
 - Day-ahead (DA) market for energy
 - price cap at 3000€/MWh
 - Centralized capacity market (comparable to GB market)
 - Market for renewable energy certificates
 - demand set inelastic to 18.3% of the yearly energy demand
- Agents
 - One market and demand agent each market
 - one risk averse energy producer (Portfolio optimization)

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	000000	0	0

Optimization parameters and Scenario overview

Technology Parameter[7]

Technologies	Inv. costs in k€/MW	Efficiency	FOM in k€/MW	VOM in €/MWh	Life time in a	Cap. factor	renewable factor
Nuclear	5000 ¹	*2	91.35	2.5	40	1	0
CCGT	850	0.6	21.25	2	30	1	0
OCGT	550	0.38	16.5	11	30	1	0
PV	800	0	13.6	0	25	0.0	1
Wind Offshore	2280	0	92.16	0	25	0.12	1
Wind Onshore	1350	0	32.4	0	22	0.25	1


¹ assumed

² fuel costs / efficiency = 9.42€/MWh

Scenario definition

Scenario	Gas costs in €/MWh
S01	40
S02	80

ntroduction	Research question	Methodology	Case study		Outlook
)	0	0000000	000000	0	0

First/preliminary results: How does energy demand elasticity affect the need for capacity markets?

Capacities in MW	DA, RES Market		DA, RES, CCM $(D^{CAP}/P^{DA}_{Peak} = 1)$		
Energy demand	inel	astic	inelastic		
	risk-averse	risk-neutral	risk-averse	risk-neutral	
Nuclear	3352.5	7941.9	4160.0	7934.0	
CCGT	5887.7	1453.7	5840.8	1555.2	
OCGT	437.8	176.9	2845.4	3594.0	
PV	6218.3	7895.8	0.0	6973.3	
WindOffShore	2854.3	2379.4	4614.9	2640.6	
WindOnShore	0.0	0.0	0.0	0.0	
total therm. cap.	9678	9572.5	12846.2	13083.2	
Load curtailment in MWh	41460.5	42150.4	0.0	0.0	
System costs in M€	7405.9	7790.7	7596.5	7984.0	

ntroduction	Research question	Methodology	Case study		Outlook
)	0	0000000	000000	0	0

Capacities in MW	DA, RES	5 Market	DA, RE (<i>D^{CAP}/1</i>	$P_{Peak}^{DA} = 1$
Energy demand	inel	astic		astic
	risk-averse	risk-neutral	risk-averse	risk-neutral
Nuclear	3352.5	7941.9	4160.0	7934.0
CCGT	5887.7	1453.7	5840.8	1555.2
OCGT	437.8	176.9	2845.4	3594.0
PV	6218.3	7895.8	0.0	6973.3
WindOffShore	2854.3	2379.4	4614.9	2640.6
WindOnShore	0.0	0.0	0.0	0.0
total therm. cap.	9678	9572.5	12846.2	13083.2
Load curtailment in MWh	41460.5	42150.4	0.0	0.0
System costs in M€	7405.9	7790.7	7596.5	7984.0

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

- Risk averse energy producer tend to install more gas fired power plants (low fuel price scenario is considered as worst case, because revenues of nuclear/wind/PV is more sensitive to gas prices than revenue of gas-fired power plants)
- With CCM market more peak load capacity are installed
- In the DA, RES, CCM case no demand is curtailed, as the installed (and available) capacity corresponds to the peak demand
- Changing the demand elasticity in shown cases did not change in installed capacity (as long as there is curtailment, not shown in the previous slide)
- With increasing demand elasticity less demand is curtailed without CCM

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

- Risk averse energy producer tend to install more gas fired power plants (low fuel price scenario is considered as worst case, because revenues of nuclear/wind/PV is more sensitive to gas prices than revenue of gas-fired power plants)
- With CCM market more peak load capacity are installed
- In the DA, RES, CCM case no demand is curtailed, as the installed (and available) capacity corresponds to the peak demand
- Changing the demand elasticity in shown cases did not change in installed capacity (as long as there is curtailment, not shown in the previous slide)
- With increasing demand elasticity less demand is curtailed without CCM

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

- Risk averse energy producer tend to install more gas fired power plants (low fuel price scenario is considered as worst case, because revenues of nuclear/wind/PV is more sensitive to gas prices than revenue of gas-fired power plants)
- With CCM market more peak load capacity are installed
- In the DA, RES, CCM case no demand is curtailed, as the installed (and available) capacity corresponds to the peak demand
- Changing the demand elasticity in shown cases did not change in installed capacity (as long as there is curtailment, not shown in the previous slide)
- With increasing demand elasticity less demand is curtailed without CCM

ntroduction	Research question	Methodology	Case study		Outlook
O	0	0000000	0000000	0	0

DA, RES, CCM Market (D^{CAP}/P^{DA}_{Peak} = 0.9). Capacities are given in MW.

Energy demand	inelastic		low e	lastic	high e	elastic
	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral
Nuclear	4253.9	7932.9	4282.0	7932.9	4160.0	7933.9
CCGT	5623.8		5615.6		5840.8	
OCGT	1662.7		1637.3		1505.4	
PV	1006.7		844.1		0.0	
WindOffShore	4329.9		4375.9		4614.9	
WindOnShore	0.0		0.0		0.0	
total therm. cap.	11540.4	11743.4	11534.9	11743.4	11506.2	11743.1
Load curtailment in MWh	10995.1	6118.0	0.0	0.0	0.0	0.0
System costs in M€	7498.6		7497.9		7494.7	

If capacity target is just getting binding:

ntroduction	Research question	Methodology	Case study		Outlook
C	0	0000000	0000000	0	0

DA, RES, CCM Market (D^{CAP}/P^{DA}_{Peak} = 0.9). Capacities are given in MW.

Energy demand	inelastic		low e	low elastic		elastic
	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral
Nuclear	4253.9	7932.9	4282.0	7932.9	4160.0	7933.9
CCGT	5623.8	1555.6	5615.6		5840.8	
OCGT	1662.7	2254.9	1637.3		1505.4	
PV	1006.7	6979.4	844.1		0.0	
WindOffShore	4329.9	2638.8	4375.9		4614.9	
WindOnShore	0.0	0.0	0.0		0.0	
total therm. cap.	11540.4	11743.4	11534.9	11743.4	11506.2	11743.1
Load curtailment in MWh	10995.1	6118.0	0.0	0.0	0.0	0.0
System costs in M€	7498.6	7882.7	7497.9		7494.7	

If capacity target is just getting binding:

ntroduction	Research question	Methodology	Case study		Outlook
C	0	0000000	0000000	0	0

DA, RES, CCM Market (D^{CAP}/P^{DA}_{Peak} = 0.9). Capacities are given in MW.

Energy demand	inelastic		low e	low elastic		high elastic	
	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral	
Nuclear	4253.9	7932.9	4282.0	7932.9	4160.0	7933.9	
CCGT	5623.8	1555.6	5615.6	1555.6	5840.8		
OCGT	1662.7	2254.9	1637.3	2254.9	1505.4		
PV	1006.7	6979.4	844.1	6979.4	0.0		
WindOffShore	4329.9	2638.8	4375.9	2638.8	4614.9		
WindOnShore	0.0	0.0	0.0	0.0	0.0		
total therm. cap.	11540.4	11743.4	11534.9	11743.4	11506.2	11743.1	
Load curtailment in MWh	10995.1	6118.0	0.0	0.0	0.0	0.0	
System costs in M€	7498.6	7882.7	7497.9	7882.7	7494.7		

If capacity target is just getting binding:

DA, RES, CCM Market (D^{CAP}/P^{DA}_{Peak} = 0.9). Capacities are given in MW.

Energy demand	inela	inelastic		low elastic		high elastic	
	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral	
Nuclear	4253.9	7932.9	4282.0	7932.9	4160.0	7933.9	
CCGT	5623.8	1555.6	5615.6	1555.6	5840.8	1555.2	
OCGT	1662.7	2254.9	1637.3	2254.9	1505.4	2254.0	
PV	1006.7	6979.4	844.1	6979.4	0.0	6973.3	
WindOffShore	4329.9	2638.8	4375.9	2638.8	4614.9	2640.5	
WindOnShore	0.0	0.0	0.0	0.0	0.0	0.0	
total therm. cap.	11540.4	11743.4	11534.9	11743.4	11506.2	11743.1	
Load curtailment in MWh	10995.1	6118.0	0.0	0.0	0.0	0.0	
System costs in M€	7498.6	7882.7	7497.9	7882.7	7494.7	7882.7	

If capacity target is just getting binding:

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

DA, RES and CCM Market, inelastic energy demand. Capacities are given in MW

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

DA, RES and CCM Market, inelastic energy demand. Capacities are given in MW

$\frac{D^{CAP}}{P_{Peak}^{DA}}$	0.	95	1	.0	1.	05
^ Peak	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral
Nuclear	4264.1	7934.0	4160.0	7934.0	4160.0	7932.9
CCGT	5648.6	1555.2	5840.8	1555.2	5840.8	1555.6
OCGT	2288.0	2924.0	2845.4	3594.0	3515.4	4264.9
PV	720.2	6973.3	0.0	6973.3	0.0	6979.4
WindOffShore	4411.0	2640.5	4614.9	2640.6	4614.9	2638.8
WindOnShore	0.0	0.0	0.0	0.0	0.0	0.0
Total therm. cap.	12200.7	12413.2	12846.2	13083.2	13516.2	13753.4
Load curtailment in MWh	2590.62	1380.36	0.0	0.0	0.0	0.0
System Costs in M€	7548.6	7933.6	7596.5	7984.0	7646.6	8034.1

Introduction	Research question	Methodology	Case study		Outlook
0	0	0000000	0000000	0	0

DA, RES and CCM Market, inelastic energy demand. Capacities are given in MW

$\frac{D^{CAP}}{P^{DA}_{Peak}}$	0.	95	1	.0	1.	05
Peak	risk-averse	risk-neutral	risk-averse	risk-neutral	risk-averse	risk-neutral
Nuclear	4264.1	7934.0	4160.0	7934.0	4160.0	7932.9
CCGT	5648.6	1555.2	5840.8	1555.2	5840.8	1555.6
OCGT	2288.0	2924.0	2845.4	3594.0	3515.4	4264.9
PV	720.2	6973.3	0.0	6973.3	0.0	6979.4
WindOffShore	4411.0	2640.5	4614.9	2640.6	4614.9	2638.8
WindOnShore	0.0	0.0	0.0	0.0	0.0	0.0
Total therm. cap.	12200.7	12413.2	12846.2	13083.2	13516.2	13753.4
Load curtailment in MWh	2590.62	1380.36	0.0	0.0	0.0	0.0
System Costs in M€	7548.6	7933.6	7596.5	7984.0	7646.6	8034.1

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	O	000000	oooooo●	O	o

• In a risk-averse and risk neutral setting more OCGT (peak load powerplant) capacity is installed with increasing capacity target

• Demand curtailment does not occur from on cap target of $D^{CAP}/P^{DA}_{Peak} = 1$

• Due to increasing installed capacity the system costs increase with increasing capacity targets

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	O	000000	ooooooo	•	o
Caralusi					

- Conclusions and key messages
 - First version of ELDEST with risk-averse agents has been implemented
 - Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - With higher risk aversion the expected costs are increasing (aligns with [6])
 - In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
 - With increasing capacity targets more peak load technology is installed

Conclusions and key messages

- First version of ELDEST with risk-averse agents has been implemented
- Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - With higher risk aversion the expected costs are increasing (aligns with [6])
- In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
- With increasing capacity targets more peak load technology is installed

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	000000	0000000	•	o
Conclus	sions and kov me				

- Conclusions and key messages
 - First version of ELDEST with risk-averse agents has been implemented
 - Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - With higher risk aversion the expected costs are increasing (aligns with [6])
 - In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
 - With increasing capacity targets more peak load technology is installed

Int	roduction	Research question	Methodology	Case study	Conclusions	Outlook
o		o	000000	0000000	•	o
	Conclusion	s and key mes	ssages			

- First version of ELDEST with risk-averse agents has been implemented
- Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - With higher risk aversion the expected costs are increasing (aligns with [6])
- In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
- With increasing capacity targets more peak load technology is installed

Int	roduction	Research question	Methodology	Case study	Conclusions	Outlook
o		o	000000	0000000	•	o
	Conclusion	s and key mes	ssages			

- First version of ELDEST with risk-averse agents has been implemented
- Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - ▶ With higher risk aversion the expected costs are increasing (aligns with [6])
- In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
- With increasing capacity targets more peak load technology is installed

Int	roduction	Research question	Methodology	Case study	Conclusions	Outlook
o		o	000000	0000000	•	o
	Conclusion	s and key mes	ssages			

- First version of ELDEST with risk-averse agents has been implemented
- Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - ▶ With higher risk aversion the expected costs are increasing (aligns with [6])
- In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
- With increasing capacity targets more peak load technology is installed

Int	roduction	Research question	Methodology	Case study	Conclusions	Outlook
o		o	000000	0000000	•	o
Conclusions and key messages						

- First version of ELDEST with risk-averse agents has been implemented
- Proof of concept und working principle could be shown with methodological case study
 - Setting the capacity target to the peak demand prevents energy not served (aligns with [6])
 - ▶ With higher risk aversion the expected costs are increasing (aligns with [6])
- In the preliminary results increasing energy demand elasticity did not show effect on installed capacities as long as load is being curtailed (or the capacity target is not binding)
- With increasing capacity targets more peak load technology is installed

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	O	0000000	ooooooo	O	●
Outlook	and next steps				

• Convergence of ADMM algorithm is highly sensitive to ρ (setting the price update step right)

How to scale linking constraints and set the price update step right?

- High runtime restricts higher temporal resolutions
 - Handle computational complexity by exploring and advancing different solution techniques (including decomposition techniques for agents update step)

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	O	0000000	0000000	O	●
Outlook	and next steps				

- Convergence of ADMM algorithm is highly sensitive to ho (setting the price update step right)

How to scale linking constraints and set the price update step right?

- High runtime restricts higher temporal resolutions
 - Handle computational complexity by exploring and advancing different solution techniques (including decomposition techniques for agents update step)

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	0000000	0000000	o	●
Outlook an	nd next steps				

- Convergence of ADMM algorithm is highly sensitive to ho (setting the price update step right)
 - ► How to scale linking constraints and set the price update step right?

- High runtime restricts higher temporal resolutions
 - Handle computational complexity by exploring and advancing different solution techniques (including decomposition techniques for agents update step)

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	000000	0000000	O	●
Outlook ar	nd next steps				

- Convergence of ADMM algorithm is highly sensitive to ho (setting the price update step right)
 - ► How to scale linking constraints and set the price update step right?

- High runtime restricts higher temporal resolutions
 - Handle computational complexity by exploring and advancing different solution techniques (including decomposition techniques for agents update step)

Introduction	Research question	Methodology	Case study	Conclusions	Outlook
O	o	000000	0000000	O	●
Outlook ar	nd next steps				

- Convergence of ADMM algorithm is highly sensitive to ho (setting the price update step right)

► How to scale linking constraints and set the price update step right?

- High runtime restricts higher temporal resolutions
 - Handle computational complexity by exploring and advancing different solution techniques (including decomposition techniques for agents update step)

References I

[1] Laurens de Vries and Petra Heijnen.

The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms.

Utilities Policy, 16(3):215–227, September 2008, doi: 10.1016/j.jup.2007.12.002.

- [2] Hanspeter Höschle, Hélène Le Cadre, Yves Smeers, Anthony Papavasiliou, and Ronnie Belmans. An ADMM-based Method for Computing Risk-Averse Equilibrium in Capacity Markets. IEEE Transactions on Power Systems, 2018.
- [3] Andreas Ehrenmann and Yves Smeers.

Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis. *Operations Research*, 59(6):1332–1346, December 2011, doi: 10.1287/opre.1110.0992.

[4] Marie Petitet, Dominique Finon, and Tanguy Janssen. Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism. Energy 102 20, 4 C. April 2017, doi: 10.1016/j.capacl.2016.12.022.

Energy Policy, 103:30–46, April 2017, doi: 10.1016/j.enpol.2016.12.032

[5] R. Tyrrell Rockafellar and Stanislav Uryasev.

Optimization of conditional value-at-risk. *The Journal of Risk*, 2(3):21–41, 2000, doi: 10.21314/JOR.2000.0

References II

[6] Hanspeter Höschle

Capacity Mechanisms in Future Electricity Markets. PhD thesis, 2018.

[7] Weidner, E; Jakubcionis, M; Vallei, M; Sigfusson, B; Jäger-Waldau, A; Lacal Arántegui, Roberto; Perez Fortes, Maria del Mar; Carlsson, J; Spisto, A; Moles, C; Giuntoli, Jacopo; Marco, G de; Lazarou, S; Magagna, D. Energy Technology Reference Indicator (ETRI) projections for 2010-2050.

Contact

Steffen Kaminski steffen.kaminski@energyville.be

Hanspeter Höschle hanspeter.hoschle@energyville.be

The research presented here has been made possible by an SBO grant provided by the FWO.

