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• Energy customers who actively manage both their production and 
consumption of energy. [1]

• They are on the rise! 

Advances in PV and storage technologies

Cost decline

Planned roll our of smart metering 

Favorable regulation 

• Grid connected decentralized PV installations

2011 = 44.5 GW 

2017 = 169 GW [2]

• Important value creators  additional services: demand response, 
ancillary services, storage capacity…

• Centralized to decentralized generation  large, variable injection 
quantities (energy & power) straining electricity grid infrastructure.

Prosumers
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• Grid-feed in limit, a physical cap on how much power 
prosumers can inject into the distribution grid. [3]

• Coupling distributed PV systems + storage with grid injection 
limits  common solution found in literature. [4], [5]

• Impose a certain characteristic on the system, for example:

• Large amounts of PV with little storage

• Charging/discharging schemes for batteries

• Favor self-consumption

• Added value of my research

• Prosumers decide for themselves based on market 
forces

• Observe system level changes

Distribution Grid Injection Limits
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• Non-cooperative game 

between suppliers and 

consumers on a 

wholesale market

• An equilibrium problem

• Energy market operator 

linking all gents and 

clearing the market

• Assume that PV is only 

residential roof-top 

Methodology

Energy-only 
wholesale 

market 
operator

Conventional 
generator

Consumers
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Mathematical formulation

• Equivalent optimization problem

• Consider constraints of all agents 

• Minimize sum of all costs – overall minimizing system costs

Decision Variables

Prosumer - Charge/discharge of battery

- PV generation (based on load factor)

- Net injection    maxwithdraw ≥ w ≥ - maxinject

- Battery, PV module, inverter capacities 

Conventional  and Wind Generators - Capacity 

- Generation
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AC Coupled Topology

Picture from: Ranaweera, I. & Midtgård, O. M. 

Optimization of operational cost for a grid-supporting PV 

system with battery storage. Renew. Energy 88, 262–272 

(2016).
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• Considering 300 different prosumer and consumer types

 Each scaled to represent 8,000 households

 Total = 4.8 million residential consumers 

 Non-residential 

• Maximum connection capacity of 10 kW = no injection limit. 

 Observe what happens as this 

imposed limit decreases.

• Time-frame: one year 

• Repeat for 5 ‘States of the World’ (SOW)

 Different plausible price structures

Country Level System
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States of the World (SOW)

450 200 550 300

370 155 310 215

270 115 75 140

270 40 75 55

1: Today’s Prices

3: 2030 IRENA 

Prediction Average

2: 2030 IRENA 

Prediction Expensive 

5: Cheaper Inverters

4: 2030 IRENA 

Prediction Cheap
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• No investments made by prosumers regardless of 

injection limits  all households remain as consumers 

• Two states yield equivalent outcomes

SOW 1 & SOW 2

Total system cost = €4.48 billion 
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At 10 kW Limit At 0.2 kW Limit Percentage 

change

Total PV 

capacity 

[MW]

SOW 3 4275 1817 -57.5

SOW 4 16010 3821 -76.1

SOW 5 16800 4626 -72.5

Total battery

capacity 

[MWh]

SOW 3 25 18 -38.9

SOW 4 5845 3190 -45.4

SOW 5 7166 5197 -27.5

Total system 

cost [bil €]

SOW 3 4.46 4.47 +0.2

SOW 4 4.34 4.42 +1.8

SOW 5 4.26 4.39 +3.0

1. Cheaper states of the world  more PV, more battery, lower system cost

2. More stringent limits  less PV, less battery, higher system cost 

• Counterintuitive – why not install as much PV/battery as in no limit case? 

• Not cost optimal to invest if they cannot inject 

• More stringent limit = lose out on injection benefit (higher opportunity cost)
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PV Capacity at Prosumer Level

10 kW 0 kW
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Sizing of Inverters 
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As grid feed-in limits become more stringent: 

1. Total installed PV and battery capacity decreases. 

2. A greater number of prosumers installs PV modules 

and batteries and there is less variation regarding 

installation capacity. 

3. Solar inverters are increasingly undersized, while the 

opposite holds for battery inverters.

4. Total injection is always well away from the maximum 

limit. 

Conclusions 
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