

REGIONAL IMPACTS OF DIFFERENT ENERGY TRANSITION PATHS

MEASURING REGIONAL IMPACTS OF AN ENERGY SYSTEM TRANSFORMATION – A CONTRIBUTION TO SUSTAINABILITY ANALYSIS

Philip Ulrich Ulrike Lehr

1. Introduction

Project and Research questions

Project InNOSys

- ⇒ Integrated sustainability assessment and optimization of energy systems (in Germany)
- Research project, funded by the Federal Ministry of Economic Affairs and Energy
- ⇒ Lead by German Aerospace Center (DLR), until 2020
- Research questions in our work package
 - ⇒ How do the macroeconomic effects differ between the scenarios?
 - Who might benefit from energy transformations in a regional dimension?
 - Which pathways is more or less sustainable (economic / social)?

Regional impact – established findings

- Transition in power generation technologies two different aspects
 - ⇒ Economic impacts during operation / power generation
 - Rural areas with RE-capacities vs. Agglomerations with carbonbased capacities
 - ⇒ Economic impacts by additional demand from investment
 - Local content and multipliers
- Even if national impacts in scenario analysis are low, there can large differences in regional impacts
- Regional economic structure (sectors and energy technologies) matters and influences
 - ⇒ Direct impact of changes in the energy mix in the energy sector
 - ⇒ The energy-related sectors have different shares in the regions
 - Multiplicators of additional demand from investment are related to regional shares of sectors

2. Method, models and scenarios

Modular structure of modelling

- Spatio-structural impacts of RE-investment
 - ⇒ RIOT-Simulation
 - RE-technology manufacturers and their location
 - Regional power generation capacities
 - Investment in 9 technologies and demand vector (63 products)
 - ⇒ Allocation of direct and indirect effects of investment
 - ⇒ Status-quo-reports since 2010 [Ulrich / Lehr 2018]
- Structural impact and dynamics of transition
 - ⇒ Integrated regional macro-economic model
 - ⇒ 37 sectors, structural changes in long term projection
 - ⇒ Top-down in a detailed macroeconomic framework
 (→ Macroeconomic IO-Model PANTA RHEI)
 - ⇒ Previous study [Ulrich / Lehr / Lutz 2018]

PANT

Modular structure of modelling

RE-jobs (2016)

- Results from hyBRID
- In eastern Germany every 80th job is related to REexpansion, in the western part every 130th
- Contribution to more evenly distributed income? More sustainable?

Outline of two scenarios

- Scenario 1
 - ⇒ Energy transition "baseline"
 - ⇒ 80%-Share of RE in power generation 2040
 - ⇒ 80%-Reduction of GHG-Emissions
 - ⇒ Federal Ministry of Economic Affairs and Energy
- Scenario 6
 - ⇒ Climate Protection Scenarios
 2050
 - ⇒ 80%-Share of RE in power generation 2032
 - ⇒ 95%-Reduction of GHG-Emissions
 - ⇒ Federal Ministry for the Environment

Gross power generation

RE-investment and regional allocation

Investment

- ⇒ More investment in Sc. 6, especially in 2040
- Differences highest for wind energy, hardly any differences for PV
- ➡ Model-based estimation by DLR
- Regional distribution
 - Distribution along natural potentials (DLR)
 - ⇒ 13 greater regions

Wind onshore Photovoltaic

Bioenergy

3. Results

National results

- Two integrated scenarios: only power generation in this analysis
- Total, national
 - GDP in Scenario 6 (more ambitious) is slightly higher
 - Differences are below +0.5 percent and highest in 2040
 - Differences employment: +0.01 % 2030 +0.07%2040+0.07 % 2050

Employment

Regional total impacts – jobs

Relative difference, in %

© 2019 GWS mbH

7

ranked regions

8

9 10 11 12 13

1 2

3 4 5 6

Ljubljana, August 2019

Two effect components – two models

Basic assumptions and main drivers	Total national investment in 9 technologies, Shift in power generation	
	Overall change of economic structure (regional and national)	Only investment and regional capacities
Regional assumption investment	Regional distribution equivalent to sectoral demand triggered by RE- investment	Regional distribution given by regional assumptions (sensitivities possible)
Decisive cause-effect relationships	-Regional importance of energy sector a.o. -Regional power generation mix	-Location of facility manufacturers -Input goods and related sector and fit to regional economic structure
Model	PANTA RHEI – LÄNDER	hyBRID
Principle of regional estimation	Top-down	Regional balancing

Results from the macroeconomic model

Relative difference, in %

© 2019 GWS mbH

ranked regions

9 10 11 12 13

5 6 7 8

1 2 3 4

Ljubljana, August 2019

Redistribution of impact with hyBRID

Relative difference, in %

© 2019 GWS mbH

78

regions

6

9 10 11 12 13

3 4 5

Ljubljana, August 2019

4. Conclusions

Conclusions (so far)

- Pathways to a more sustainable energy supply can be very different
- Different climate protection scenarios: the differences at the macroeconomic level are rather small. As a result, questions of distribution become more important.
- The regional distribution of investments in Germany has a high influence on the overall effects
- Assumptions on the future regional distribution of investments are also characterized by a high degree of uncertainty.
- Policy-makers could also focus here on the structural impact of the investments in a regional context. Social sustainability can also be supported by guidelines on the regional distribution of investments (SDG 10 and 11).

Potential further research

- Changes in regional manufacturing / market shares
- Lignite Mining and the phase-out of coal
- Integrated regional Input-Output-Assessment?
- ► More regional rural-urban context

Literature:

- Ulrich, P. & Lehr, U. (2018): Erneuerbar beschäftigt in den Bundesländern Bericht zur aktualisierten Abschätzung der Bruttobeschäftigung 2016 in den Bundesländern. GWS Research Report 2018/2, Osnabrück.
- Ulrich, P., Lehr, U. & Lutz, C. (2018): Gesamtwirtschaftliche Effekte der Energiewende in den Bundesländern Methodische Ansätze und Ergebnisse. GWS Research Report 2018/5, Osnabrück.
- Lutz, C., Flaute, M., Lehr, U., Kemmler, A., Kirchner, A., auf der Maur, A., Ziegenhagen, I., Wünsch, M., Koziel, S., Piégsa, A. & Straßburg, S. (2018): Gesamtwirtschaftliche Effekte der Energiewende. GWS Research Report 2018/4, Osnabrück, Basel.

CONTACT PERSON

Thank you for your attention.

Philip Ulrich T +49 (0) 40933 - 200 E ulrich @ gws-os.com Research associate

Confidentiality of Information (OPTIONAL)

The content of this document is strictly confidential and must not be circulated or used without permission of GWS.

www.gws-os.com

Gesellschaft für Wirtschaftliche Strukturforschung mbH Heinrichstr. 30 49080 Osnabrück Tel + 49 (0) 541 40933-200 Fax + 49 (0) 541 40933-110 ulrich @ gws-os.com