Environmental Engel curves and displacement effects of pollution: An empirical investigation

Marco Baudino

16th IAEE European Conference, Ljubljana, 25-28 August 2019

August 27, 2019

The Environmental Engel Curve (EEC)

Figure: Environmental Engel Curve.

EEC assumption: income (Y) and environmental degradation from household activities (D) follow an inverted U-shaped pattern over time (Levinson and O'Brien, 2019).

Relevant theoretical studies have been calling for the need to separate emissions by source (Kaika and Zerva, 2013; Plassman and Kehanna, 2006; Pearce, 2003):

- Emissions from economic activities \implies Role exerted by the technique effect.
- Emissions from household activities \implies Role exerted by individuals' preferences.

The Environmental Engel Curve (EEC)

The role of individuals' preferences

Figure: Income elasticity for environmental quality.

where $\eta = \frac{(\Delta E)\%}{(\Delta Y)\%} = \frac{\theta E}{\theta Y} \frac{Y}{E}$

Environmental quality is perceived as an income-elastic commodity:

- Increases of individuals' income are associated to a higher propensity for environmental quality.
- With income growth, the marginal utility for non-environmental goods ↓, and the marginal disutility for environmental degradation ↑.

..we have to consider the role of displacement effects of pollution (Roca, 2003):

- It may be that individuals do not shift their preferences towards environmental goods when their income increases, but simply transfer polluting activities to lower-income regions.
- $\rightarrow\,$ In the presence of displacement effects, the emergence of an EEC pattern can thus be misleading.

- Test the validity of the EEC hypothesis.
 - \rightarrow Need to distinguish carbon dioxide levels of emission by source (Mazzanti et al., 2008):
 - CO2 emissions deriving from household activities (keep).
 - CO2 emissions deriving from economic activities (discard).
 - \rightarrow Are household emissions spatially correlated?
- Itest the presence of displacement effects.
 - \rightarrow Usefulness of spatial econometric techniques.

Data

Strongly balanced panel data

- Object of analysis: the Italian scenario.
- Type of data: longitudinal observations on per capita household levels of CO2 emissions, income and household size aggregated at the regional level.
- Time horizon: 1995-2008.
- Data sources: Istat.

Exploring the growth-environment nexus

Non spatial specification:

$$co2_{it} = \alpha_0 + \alpha_1 inc_{it} + \alpha_2 (inc_{it})^2 + \alpha_3 hsize_{it} + \epsilon_{it}$$
$$i = 1, ..., N; \quad t = 1, ..., T$$

Spatial specification; Spatial autoregressive model with fixed effects (SAR-FE):

$$\mathit{ln}(c_t) =
ho \mathit{W} \mathit{ln}(c_t) + \mathit{X}_t \eta + \mu + \epsilon_t$$

Advantages of spatial against non-spatial models:

- Cope with potential omitted variable bias (Marbuah and Mensah, 2017).
- Reduce potential cross-sectional dependence (Sarafidis and Wansbeek, 2011).
- Useful to detect displacement effects through the computation of marginal effects (Maddison, 2006).

Econometric strategy

Spatial autoregressive model with fixed effects (SAR-FE):

$$ln(\boldsymbol{c_t}) =
ho \boldsymbol{W} ln(\boldsymbol{c_t}) + \boldsymbol{X_t} \boldsymbol{\eta} + \boldsymbol{\mu} + \boldsymbol{\epsilon_t}$$

Principles adopted to construct the spatial weight matrix \boldsymbol{W} :

- Delaunay triangulation
- Inverse square distance (ISD)
- Contiguity

Estimators utilized:

- Maximum log-likelihood estimator
- Two-step GMM estimator for spatial autoregressive models (Drukker et al., 2013)

Constructing the spatial weight matrix W

$$W_{(w_{ij}\subset W)} = \begin{bmatrix} w_{11} & \cdots & w_{1N} \\ \vdots & \ddots & \vdots \\ w_{N1} & \cdots & w_{NN} \end{bmatrix}$$

Contiguity weighting:

$$w_{ij} = \begin{cases} 0 & \text{if the districts } i \text{ and } j \text{ are not neighbors} \\ 1 & \text{otherwise} \end{cases}$$

Inverse square distance weighting:

$$w_{ij} = \begin{cases} 0 & \text{if the districts } i \text{ and } j \text{ are not neighbors} \\ 1/[D(i,j)]^2 & \text{otherwise} \end{cases}$$

Weighting based on Delaunay triangulation

Definition: a Delaunay triangulation for a given set P of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P).

Figure: Example of Delaunay triangulation.

Advantages of the Delaunay triangulation method over contiguity and inverse square distance weightings:

- It takes into account isolated spatial units.
- It is robust against uneven distribution of spatial units.

Estimators: GMM vs ML

Advantages of the GMM over the ML estimator in estimating the SAR model:

- ML is more efficient than GMM when disturbances are normally distributed, but has less computational simplicity than the GMM and is generally inconsistent in presence of heteroskedasticity.
- GMM only requires a partial specification of the model, performs better than ML in small samples and is more robust to heteroskedasticity.
 - \rightarrow Two-step GMM estimator for spatial autoregressive models (Drukker et al., 2013).
 - \rightarrow Galvao test to asses the normality of error components in panel data (Galvao et al., 2013).

Test of spatial dependence

Figure: Delaunay triangulation.

Figure: LISA cluster map.

Local indicators of spatial association:
$$LISA = \frac{(C_i - \bar{C})}{\sum_i (C_i - \bar{C})^2} \sum_j w_{ij}(C_i - \bar{C})$$

Verieble	Fixed Effects	Maximum log-likelihood			Two-step GMM		
Variable		Delaunay	IDS	Contiguity	Delaunay	IDS	Contiguity
ρ		0.408**	0.382**	0.357**	0.386**	0.337**	0.304
		(0.1443)	(0.1698)	(0.1238)	(0.1738)	(0.1771)	(0.3416)
inc	-0.511**	-0.348**	-0.363**	-0.392**	-0.272**	-0.325**	-0.369**
	(0.1238)	(0.1713)	(0.1814)	(0.1520)	(0.0885)	(0.0966)	(0.1791)
$(inc)^2$	0.011***	0.007*	0.008*	0.008**	0.006**	0.006**	0.007*
	(0.0027)	(0.0041)	(0.0043)	(0.0037)	(0.0020)	(0.0022)	(0.0039)
h-t	0.198***	0.130***	0.130***	0.150***	0.156***	0.165***	0.183**
hsize	(0.0450)	(0.0302)	(0.0340)	(0.0311)	(0.0427)	(0.0422)	(0.0728)
Region FE	YES	YES	YES	YES	YES	YES	YES
Sigma-squared res.	0.0023300	0.0018534	0.0018599	0.0018876	0.0021483	0.0021958	0.0023271
Kleibergen-Paap LM					0.005	0.000	0.000
test (<i>Prob.</i> $< \chi^2$)					0.005	0.000	0.002
Hansen J test							
(Prob. $< \chi^2$)					0.1441	0.1322	0.1718
F-test statistic	467.82	25.91	17.44	40.78	2711.03	2476.73	1154.81
Log-likelihood	432.4343	478.0172	476.4493	475.7076	475.2535	472.2161	417.903

Table: Econometric estimates.

Note: all variables are expressed in natural logarithms. Levels of significance: p<0.10, p<0.05, and p<0.01. Standard errors in parenthesis.

Table: Marginal effects of the SAR-FE model.

Test	Direct effect	Indirect effect	Total effect
inc	-0.365***	-0.226**	-0.591***
	(0.0739)	(0.0652)	(0.1195)
$(inc)^2$	0.008***	0.005**	0.012***
	(0.0020)	(0.0015)	(0.0031)
hsize	0.137***	0.085**	0.221***
	(0.0389)	(0.0298)	(0.0624)

Note: all variables are expressed in natural logarithms. Levels of significance: p < 0.10, p < 0.05, and p < 0.01. Standard errors in parenthesis.

Conclusion

Empirical findings

- The validity of the EEC pattern does not find empirical validation. Instead, a U-shaped relationship emerges between household income and emissions.
- Italian households do not perceive, on average, environmental quality as an income-elastic commodity.
- The hypothesis of displacement effects does not find empirical validation. Negative environmental outcomes are thus not externalized to neighboring regions.
- Potential solutions and policy implications
 - Increase individual awareness on environmental issues.
 - Better redefine the governance deriving from the environmental regulatory framework.
 - Increase political participation on environmental matters.

References

- Drukker, D. M., 2013. "On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors", *Econometric Reviews*, vol. 32(6), pp. 686-733.
- Galvao, A. F., 2013. "Tests for skewness and kurtosis in the one-way error component model", *Journal of Multivariate Analysis*, vol. 122, pp. 35-52.
- Kaika, D. and Zervas E., 2013. "The Environmental Kuznets Curve (EKC) theory Part A: Concept, causes and the CO2 emissions case", *Energy Policy*, vol. 33, pp. 23-38.
- Levinson, A. and O'Brien, J., 2019. "Environmental Engel curves: Indirect emissions of common air pollutants", *Review of Economics and Statistics*, vol. 101(1), pp. 121-133.
- Maddison, D., 2006. "Environmental Kuznets curves: A spatial econometric approach", *Journal of Environmental Economics and Management*, vol. 51(2), pp. 218-230.
- Marbuah, G. and Mensah, 2017. A. "Spatial analysis of emissions in Sweden". *Energy Economics*, vol. 68, pp. 383-394.
- Mazzanti, M. et al., 2008. "Environmental Kuznets curves for air pollutant emissions in Italy: Evidence from environmental accounts (NAMEA) panel data". *Economic Systems Research*, vol. 20(3), pp. 277-301.
- Plassmann, F. and Kehanna, N., 2006. "Preferences, technology, and the environment: Understanding the environmental Kuznets curve hypothesis". *American Journal of Agricultural Economics*, vol. 88(3), pp. 632-643.

Marco Baudino

17 / 19

- Roca, J., 2003. "Do individual preferences explain the Environmental Kuznets curve?". *Ecological Economics*, vol. 45(1), pp. 3-10.
- Sarafidis, V. and Wansbeek, T., 2011. "Cross-sectional dependence in panel data analysis", *Econometric Reviews*, vol. 31(5), pp. 483-531.

Thank you