

Quantifying The Worst-Case Impact of Strategic Bidding on a Redispatch Market

Simon Voswinkel 28.08.2019 – 16th IAEE European Conference in Ljubljana, Slovenia

Federal Ministry for Economic Affairs and Energy

Supported by

on the basis of a decision by the German Bundestag UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Background and Motivation	1
What is INC-DEC gaming?	3
Our modelling approach	4
The results	5

Motivation

- The merits of regional flexibility markets are being debated in Germany
- Multiple projects aiming to implement congestion management on the distribution level
- Big debate about the "gameability" of these markets
- Why regional flexibility markets?
- distribution grids are no longer expected to absorb peak infeed from renewables
- growing amount of decentral flexibilities in the system
 - hard to manage in the existing, cost based redispatch system

Bigger markets make redispatch necessary

Actual detail of electricity grid

Representation of the grid in zonal setting

5

Background and Motivation	1
What is INC-DEC gaming?	3
Our modelling approach	4
The results	5

- Redispatch market is active after Day-Ahead market
- Participants are free to bid what they want (as they are now)
- Grid operator performs redispatch in the most cost effective way possible

Competing for redispatch – what is the problem?

INC-DEC Gaming

- If grid operator wants units to increase production
 - it has to offer a higher price than in the spot market → if the spot market price was enough, units would already be producing
- If grid operator wants units to decrease production (same as increasing demand)
 - it has to sell energy at a lower price than in the spot market → same reasoning as before

Result:

- Export constrained regions (where production is decreased) get the opportunity to buy energy for a lower price than in the spot market
- Import constrained regions (where production is increased) get the opportunity to sell energy for a higher price than in spot market

Why not wait for the redispatch market to buy energy cheap / sell it for more?

- Units in import constrained nodes:
 - know that they can sell their energy for more money in the redispatch market

→ redispatch market sets benchmark price (opportunity costs) for these units even in the spot market

- Units in export constrained nodes:
 - know that they can buy energy at a low price in the redispatch market
 - \rightarrow they lower their bid to the expected price in the redispatch market

This makes congestions worse!

- Production in export constrained nodes increases
 - units know they can buy back the energy cheap in the redispatch market (even if production is not profitable at spot market prices)
- Production in import constrained nodes decreases
 - units wait for better prices in the redispatch market

INC-DEC Gaming = INCrease DECrease Gaming

Increase production in spot market Decrease production in redispatch market (and get paid for it)

Another way to look at it:

Create congestions in order to get paid to resolve them

Main research question: How bad can it get?

If every market participant has perfect anticipation and fully utilizes its knowledge to bid strategically:

- what are the effects on congestions? (and consequently redispatch volumes)
- what is the effect on consumer prices?
- how are generator rents affected?

Background and Motivation	1
What is INC-DEC gaming?	3
Our modelling approach	4
The results	5

Our model

What do we model?

- CWE + Switzerland = Austria, Belgium, France, Germany, Netherlands, Switzerland
- Grid model with nodal resolution (220 kV and above)
- Zonal clearing with flow-based market coupling
- Redispatch with nodal resolution
- Optimization Problem: Minimization of System Cost
- ~1200 Generators

Getting the anticipated values

Redispatch

Zonal Clearing

Background and Motivation	1
What is INC-DEC gaming?	3
Our modelling approach	4
The results	5

First results

Zonal clearing:

- Payments to generators increase by 8 million Euros (basically nothing)
- Rents to generators decrease by 500 million Euros
- Increase in congestions after zonal clearing: 250%
- Redispatch:
- Payments to generators increase by 180 million Euros (+44%)
- This corresponds to an extra charge of 0.18€/MWh to customers
- Rents to generators increase by 672 million Euros
- Increase in redispatching volume: +48% (29 TWh per direction)

- Although congestions increase by 250%, redispatching volume only increases by 48%
 - remedial actions can affect many different congestions
- The increase in congestions does not tell the whole story:
 - we assume perfect coordination by the grid operator
 - would a grid operator be able to deal with such a heavy increase?
- The effect on consumer prices should be relatively mild
 - only 18ct/MWh in this worst case scenario

Next steps:

- Include the effect of uncertainty in the analysis \rightarrow no perfect anticipation
- Find a way to limit redispatch quantities while preserving realistic prices

How to get realistic prices while limiting redispatch quantities?

Not working:

- introduce penalty on costs for all generators, so that no ex-post optimization takes place
 - shadow prices are distorted
- calculating redispatch with high volume penalties → use volume as constraint in actual run
 - volume constraint becomes the binding constraint \rightarrow no usable shadow prices

Maybe working:

- allow redispatch only on units whose sensitivity on congestion is above a certain threshold
 - Problem: How to simulate anticipation?
 - Which lines are congested depends on the zonal clearing
 - Anticipated prices in the zonal clearing depend on which lines are congested

Who wins compared to no strategic bidding?

- units on import constrained nodes that would have produced after the spot market
- units on export constrained nodes that would not have produced after the spot market

Who loses compared to no strategic bidding?

- There is no escape:
 - INC-DEC Gaming can destroy prices for cheap units
 - \rightarrow payments to generators in the zonal clearing decrease slightly
- No matter if they game or not:
 - units can lose money compared to a situation where nobody games

Conclusions

- Worst Case impact of INC-DEC gaming:
 - volume of congestions more than doubles
 - redispatch volumes increase by half
- INC-DEC gaming is a real-world concern
- Uncertainties should be taken into account for further analyses
- Monetary impact is manageable
- If security concerns can be handled: trade-off might be worth it
 - if especially demand-side flexibilities can be included

Limitations

- Very high redispatching volume
 - Reason: No penalties for volumes → the zonal solution is "optimized" to the nodal solution
 - centrally optimized CWE-wide redispatch
- No phase shifting transformers or HVDC
 - Inclusion should reduce the effect
- Worst case assessment: Uncertainties are not considered
 - Consideration of uncertainties should reduce the effect
- No decentral flexibilities
 - strategic bidding only by large units
- no ramp up costs, minimum running times
 - Direction of impact unclear

28 August 2019

D_U I_S_B_U R G E_S_S_E_N 22 Open-Minded

Why redispatch?

Motivation

need for redispatch

Determining bids for zonal clearing with anticipation

- **Basis:** Results from Redispatch after the first zonal clearing
- Prices from the first redispatch market are anticipated in the second zonal clearing
- The decision whether to adjust bids depends on:
- the prices in the redispatch market
- what kind of redispatch occurs on any given node (upwards or downwards)
- Bids are set to anticipated redispatch price if
- if price after redispatching is lower than marginal costs and redispatch is downwards
- if price after redispatching is higher than marginal costs and redispatch is upwards

