Introduction	Model and Data	Results	Conclusion	References	Appendix
0000	0000	0000	O		O

Locally Incentive-Compatible Energy Prices and the Paris Agreement

Sebastian Rausch¹ Jan Schneider¹

¹ETH Zürich

IAEE 2019, Ljubljana

Efficient Energy Prices

Parry et al. (2014)

- Efficient prices fully reflect supply cost and external damages
- Pre-tax subsidy: price < supply cost
- Post-tax subsidy: price < supply cost + external cost

Efficient Energy Prices

Parry et al. (2014)

0000

- Efficient prices fully reflect supply cost and external damages
- Pre-tax subsidy: price < supply cost</p>
- Post-tax subsidy: price < supply cost + external cost

Coady et al. (2017)

- Global pre-tax subsidies estimated to be US\$ 333 billion (0.4% of global GDP) in 2015
- Global post-tax subsidies estimated at US\$ 5.3 trillion (6.5%) of global GDP) in 2015

Model and Data

Results

Conclusio O Reference

Appendix

Energy Consumption Externalities

Global externality

• Climate change

Local externalities

- Local pollution (SO₂, NO_x, PM)
- Congestion
- Accidents
- Road damages

Model and Data 0000 Results

Conclusion O

References

Appendix 0

Literature Background

$\textbf{Major focus:} \ \text{Local co-benefits of mitigating GHG emissions}$

- West et al. (2013)
- Vandyck et al. (2018)
- Parry et al. (2015)

Model and Data

Results 0000 Conclusior O References

Appendix O

Literature Background

Major focus: Local co-benefits of mitigating GHG emissions

- West et al. (2013)
- Vandyck et al. (2018)
- Parry et al. (2015)

Game theory: Fundamental incentive problems with internalizing global externality

• Marrouch and Chaudhuri (2016) for a summary on IEA literature

Model and Data

Results 0000 Conclusion O References

Appendix 0

Literature Background

Major focus: Local co-benefits of mitigating GHG emissions

- West et al. (2013)
- Vandyck et al. (2018)
- Parry et al. (2015)

Game theory: Fundamental incentive problems with internalizing global externality

- Marrouch and Chaudhuri (2016) for a summary on IEA literature
- \rightarrow Locally incentive-compatible energy prices:

price = supply cost + local externalities

Model	а
0000	

R	es	su	lt
0	0	0	0

Conclusio

Reference

Appendi× 0

Research Question

Locally incentive-compatible energy pricing reform

- Local costs and benefits of implementing locally incentive-compatible energy prices through Pigouvian taxes and removal of pre-tax subsidies
- Global co-benefits in terms of CO₂ reduction

roduction	
000	

Int

Model and Data 0000 Results

Conclusio 0 Reference

Appendix

Research Question

Locally incentive-compatible energy pricing reform

- Local costs and benefits of implementing locally incentive-compatible energy prices through Pigouvian taxes and removal of pre-tax subsidies
- Global co-benefits in terms of CO₂ reduction

Related studies

- Nam et al. (2013)
 - CGE analysis on China: SO₂ and NO_x targets in Twelfth Five Year Plan lead to CO₂ emission savings such that CO₂ intensity targets do not bind
- Parry et al. (2015)
 - PE analysis on top 20 emitters: Given local co-benefits, CO₂ prices of 57,5 \$US on average are in countries own interest

Introd	uction
0000	

Model and Data •000

R	es	u	lt	S
0	0			

Conclusion O References

Appendix 0

Model and Data

Numerical Model

- Static multi-region, multi-sector CGE model of global trade and energy
- CES in production, consumption, and trade

Data

- GTAP 9 dataset version 9.2 and 9.2es (base-year 2011)
- Input-output, bilateral trade, and fuel-specific CO₂ data
- Coady et al. (2017), Parry et al. (2014)
 - Country-, fuel-, and use-specific marginal damage of fossil fuel consumption
 - Quantified damages from SO₂, NO_x, PM 2.5, congestion, accidents, road damage

Intro	du	ctio	n
000	0		

Model and Data

Results

Conclusion

References

Appendi>

Data Example

							Externa	lities		
Product	Type of Use	Price Units	Supply Cost	Consumer Price	Global Warming	Local Pollution	Congestion	Accidents	Road Damage	Total
Gasoline	Final Intermediate	US\$ per liter	0.95 0.95	1.19 1.19	0.09 0.09	0.04 0.04	0.03 0.03	0.76 0.76	:	0.93 0.93
Diesel	Final Intermediate	US\$ per liter	0.98 0.98	0.86 0.86	0.11 0.11	0.10 0.10	0.02 0.02	0.30 0.30	0.01 0.01	0.55
Kerosene	Final Intermediate	US\$ per liter	0.96 0.96	0.26 0.26	0.11 0.11	0.10 0.10	:	:	1	0.21 0.21
Total Petroleum	All	US\$ per liter								
Coal	Final Intermediate	US\$ per GJ	4.41 4.41	4.41 4.41	3.72 3.72	6.50 6.50	:	:	1	10.22 10.22
Natural Gas	Final Intermediate	US\$ per GJ	17.84 17.84	15.93 15.93	2.20 2.20	0.16 0.16	:	1	:	2.35 2.35
Electricity	Final Intermediate	US\$ per kWh	0.10 0.10	0.09 0.09	:	:	:	-	1	:

Source: Coady et al. (2017)

Model and Data

Results 0000 Conclusio 0 References

Appendix

Model Sectors and Regions

Sectors and commodities	Regions
Energy sectors	MEN: Middle East and North Africa
Coal	SSA: Sub-Saharan Africa
Crude oil	CIS: Commonwealth of Independent States
Natural gas	EDA: Emerging and Developing Asia
Refined oil products	EME: Emerging Europe
Electricity	ADV: Advanced Economies
EITE sectors*	LAC: Latin America and the Caribbean
Non-ferrous metals	
Iron and steel	
Non-metallic minerals	
Chemicals and rubber	
Paper, pulp, and print	
Transport sectors	
Air transport	
Water transport	
Other transport	
Other sectors	
Agriculture	
All other goods	

EITE - energy-intensive and trade-exposed sectors.

Model and Data

Results 0000 Conclusion

References

Appendix 0

Scenarios

One scenario is composed of assumptions along four dimensions

Dimension	Denotation
Extent of Pigouvian taxation	none, LPOLL, NPOLL, FULL
Pre-tax subsidy removal	no, yes
Climate policy	none, Paris, Paris+, Paris-2C
International market response	SOE, MRT

Model and Data

Results

Conclusion

References

Appendix O

Scenarios

One scenario is composed of assumptions along four dimensions

Dimension	Denotation
Extent of Pigouvian taxation	none, LPOLL, NPOLL, FULL
Pre-tax subsidy removal	no, yes
Climate policy	none, Paris, Paris+, Paris-2C
International market response	SOE, MRT

Focus here:

- 1. LPOLL under SOE and MRT
- 2. Paris combined with none, LPOLL, FULL under SOE and MRT

Introd	uction
0000	

Model and Data

Results

Conclusio

Reference

Appendix

Business-as-Usual Overview

	Consump- tion ^a	Local Ex- ternalities ^a	Welfare ^a	CO_2 Emissions ^b	CO ₂ Externality ^{a,}
ADV	28064	2029	26035	11.4	
CIS	1275	259	1016	2.3	
EDA	5218	2030	3188	10.0	
EME	1265	205	1059	0.8	
LAC	3755	232	3523	1.5	
MEN	1626	188	1438	1.9	
SSA	893	56	837	0.6	
World	42096	5000	37096	28.4	1421

^a In billion 2011 \$US.

^b In Gt.

 $^{\rm c}\,$ Assumed social cost of carbon of 50 \$US.

troduction	Model and Data	Results ○●○○	Conclusion O	References	Appendix O
	Sce	enario LP	OLL-SOE		

Introduction	Model and Data	Results	Conclusion	References	Appendix
0000	0000	00●0	O		O
	Sce	nario LP	OLL-MRT		

Introduction	Model and Data	Results	Conclusion	References	Appendix
0000	0000	000●	0		0

CO₂ prices to achieve Paris NDCs

Model and Data 0000 Results

Conclusion

References

Appendix

Conclusion and Outlook

Conclusion

- Potential regional gains from pushing towards locally incentive-compatible energy prices are substantial
- Global co-benefits in terms of CO₂ emission reductions are substantial; Compliance cost for Paris NDCs decline markedly
- Highly integrated international markets make it necessary to include MRT for efficiency and incidence analyses
 - In the MRT setting, MEN, SSA, and LAC even lose in overall welfare in a global Pigouvian taxation scheme

Ongoing research

- Full regional disaggregation
- Sensitivity analyses on external cost parameters

Model and

Results

Conclusio 0 References

Appendi>

References I

- Coady, D., I. Parry, L. Sears, and B. Shang (2017, March). How Large Are Global Fossil Fuel Subsidies? *World Development 91*(Supplement C), 11–27.
- Marrouch, W. and A. R. Chaudhuri (2016, September). International Environmental Agreements: Doomed to Fail or Destined to Succeed? A Review of the Literature. *International Review of Environmental and Resource Economics* 9(3–4), 245–319.
- Nam, K.-M., C. J. Waugh, S. Paltsev, J. M. Reilly, and V. J. Karplus (2013, December). Carbon co-benefits of tighter SO2 and NOx regulations in China. *Global Environmental Change* 23(6), 1648–1661.
- Parry, I., C. Veung, and D. Heine (2015, November). How much carbon pricing is in countries' own interests? the critical role of co-benefits. *Climate Change Economics 06*(04), 1550019.
- Parry, I. W. H., M. D. Heine, E. Lis, and S. Li (2014, July). Getting Energy Prices Right: From Principle to Practice. International Monetary Fund.
- Vandyck, T., K. Keramidas, A. Kitous, J. V. Spadaro, R. V. Dingenen, M. Holland, and B. Saveyn (2018, November). Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges. *Nature Communications 9*(1), 4939.
- West, J. J., S. J. Smith, R. A. Silva, V. Naik, Y. Zhang, Z. Adelman, M. M. Fry,
 S. Anenberg, L. W. Horowitz, and J.-F. Lamarque (2013, October). Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. *Nature Climate Change* 3(10), 885–889.

16/16