

Revenue Stabilisation

Lena Kitzing* & Barbara Breitschopf

*corresponding author, lkit@dtu.dk

16th IAEE European Conference, Ljubljana, 25. - 28. August 2019 Energy Challenges for the Next Decade

Background & Research motivation

- RES support:
 - administratively set feed-in tariffs/premiums are phasing out
 - auctions become dominant policy instruments for setting support levels for renewable energy projects
 - bid prices are significantly below former feed-in tariffs/premiums
 - examples of zero-subsidy bids for sliding premiums in German and Dutch wind offshore projects
- Question: Without required support payments will auctions become obsolete?

Minimum, maximum and averages of awarded bids of solar power projects in Germany 1,1,2015 1,1,2018 1,2018 1,201

Fraunhofer

Source: Bundesnetzagentur 2019

€ct/kWh

Research idea: Potential future policy reorientation

- Mechanisms to 'stabilise' revenues rather than 'provide' revenues
- Although level of support payments becomes less important due to falling costs, exposure to uncertainty remains / increases
- Volatility of revenues has impacts on liquidity and thus on:
 - Risk profile of investment
 - Loan conditions, incl. debt capacity
 - Investment decision
- PPAs and hedging are not always an option
- \rightarrow additional measures are necessary to assure debt service \rightarrow liquidity management
- Auctions may be used to granting access to this "liquidity", i.e. insurance-type reserve pool

Fraunhofer

Research Topic: Revenue stabilisation

- Different liquidity management options:
 - 1) project internal cash flows
 - 2) public reserve pool
 - 3) commercial reserve pool, e.g. by bank
- Indicator: debt capacity, i.e. maximum feasible debt share
- Research question: Can a public revenue stabilisation pool enable higher debt capacity and reduce default risk?

Fraunhofer

Probabilistic forecast of next years' cash flows

Cash waterfall – operating phase

Probabilistic forecast of next years' cash flows

Method: Approach

- Liquidity management approach and restrictions:
 - reserves to cover 95% confidence interval of financial distress $(E(CFADS)_t Debt Service_t < 0)$
 - 1) Full market exposure: no liquidity management (reference)
 - 2) Liquidity management at project level: reserves only from earlier project cash flows
 - 3) Public liquidity reserve pool: net zero payments $(\sum_{t=1}^{T} L_t^{IN} = \sum_{t=1}^{T} L_t^{OUT})$
 - 4) Private liquidity reserve pool: as 3), plus interest payments for short term 'loan' from pool
- Application case:
 - Future offshore wind park in Germany
 - Modelled on cost & price assumptions for a park commissioned in 2025
 - Expectedly at the threshold to be profitable without net support payments (NPV_(project) ≈ 0)
 - Annual price and production variations

8

- Stochastic cash-flow model, multi-year, Monte-Carlo simulation
 - Two-factor power price model (Schwartz-Smith)

$$\ln(S_{t+\Delta t}) = \xi_{t+\Delta t} + \chi_{t+\Delta t}.$$

Implementation after Davis (2012)

$$S_{t+\Delta t} = \exp\left(\xi_t + \mu_{\xi}\Delta t + e^{-\kappa\Delta t}\chi_t\right)\exp\left(\sigma_{\xi}\sqrt{\Delta t}\varepsilon_t + \sigma_{\chi}\sqrt{\frac{1 - \exp(-2\kappa\Delta t)}{2\kappa}}\varpi_t\right)$$

• Stochastic wind power generation using Weibull distribution

$$q_t = P\lambda(-\ln(1-\varepsilon_t))^{\frac{1}{k}}$$

Method: Stochastic cash flow simulations

Scenario	Max. debt capacity
Full market variability (as reference)	54.0%

Scenario	Max. debt capacity
Full market variability (as reference)	54.0%
Liquidity management at project level	61.4%

 \rightarrow Sum of all nominal payments is zero

Fraunhofer

ISI

→ Short term interest payments increase reserve requirements and shift them in time

Open issues to be investigated:

- Injection requirements and timing
- Financing of public pool (sufficient portfolio effect?)

Results: Shareholder value

Occurence of negative Shareholder Value

Average Shareholder Return (non-distress cases)

Conclusions

- Our conclusion
 - Liquidity reserve pools enable higher debt shares & more attractive investments
 - Public reserve pools seem an appropriate vehicle to provide liquidity (to be investigated further)
 - This will ensure future RES deployment at low LCOE & net zero support
- · Next steps in the research
 - Shorter time horizon for liquidity management (monthly?)
 - Implement a mixture of strategies (internal liquidity management plus pool)
 - Overall financing of the public pool (modelling of all injections and withdrawals)
- Policy implications
 - In the past, revenue stabilisation was a 'side effect' of support schemes (e.g. FIT)
 - Currently, we are in a transition phase using auctions for the allocation of support, with ever lower shares of 'secured' revenue -> financing becomes an issue
 - There is a case for establishing public liquidity reserve pools (insurance-type scheme) -Auctions could be a vehicle to provide access

Time for Questions & Comments

