Managing Spatial Sustainability Trade-offs: The Case of Wind Power

Paul Lehmann, Erik Gawel, Charlotte Geiger, Jennifer Hauck, Jan-Niklas Meier, Antje Nieber, Philip Tafarte, Daniela Thrän, Elisabeth Wolfram

> Presented at the 16th IAEE European Conference Ljubljana, 25-28 August 2019

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Content

Introduction

Method

Results

Spatial allocation of wind power

- Differing opinions on where to site expanding number of wind turbines in Germany
- Underlying spatial trade-offs between different sustainability criteria, e.g.,
 - Minimization of power production costs
 - Minimization of power grid and system integration costs
 - Nature and landscape conservation
 - Distributive justice

Research objectives

Main research question:

Which challenges arise for decision-making if wind power generation capacity has to be allocated across regions in the presence of sustainability trade-offs?

Underlying questions:

- Is there a generally accepted ranking and definition of sustainability criteria?
- What is the relative importance of efficiency and equity arguments?

Literature review

Economic analyses

- E.g., Eriksen et al., 2017, Klein et al., 2017, Kopiske and Gerhard, 2018, Schlachtberger et al., 2017
- Focus on spatial optimization across different categories of energy system costs, no non-marketable sustainability criteria

Multi-criteria decision analyses

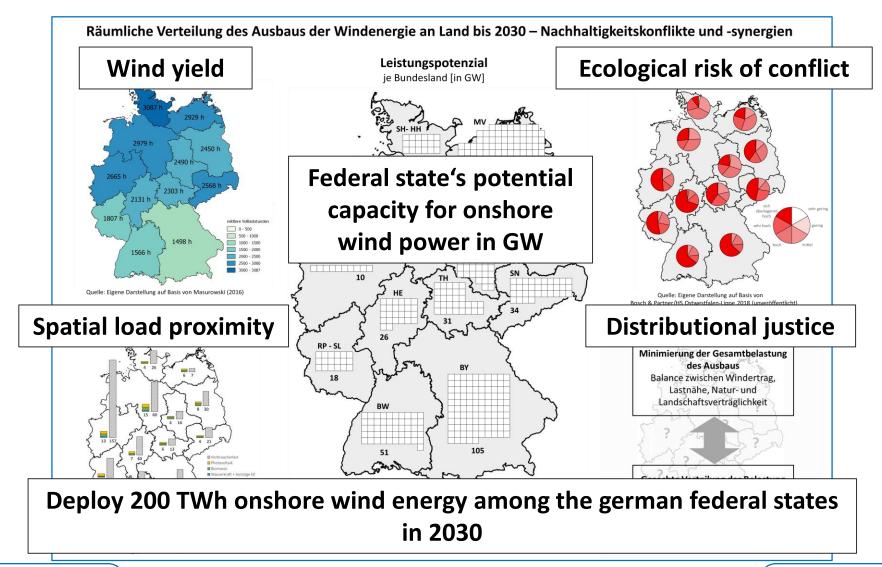
- E.g., Egli et al., 2017; Eichhorn et al., 2019; Eichhorn et al., 2017, Kienast et al., 2017, Hanssen et al., 2018
- More comprehensive consideration of sustainability criteria but very rigid assumptions regarding criteria weights

Open question: How to rank sustainability criteria?

Introduction

Method

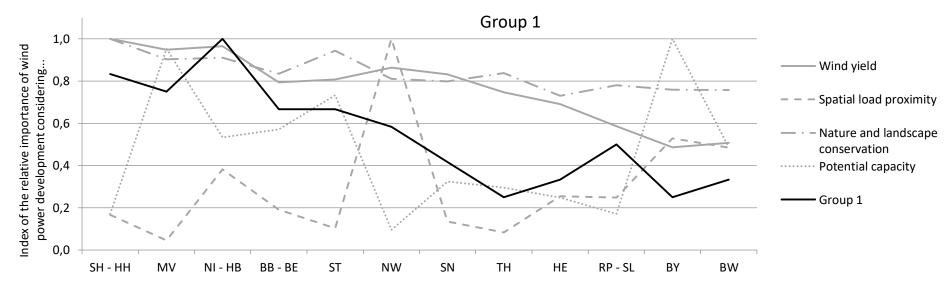
Results



Method: Simulation Game

- Transdisciplinary game to reveal preferences regarding sustainability criteria
- Played with 30 stakeholders from administration, industry, civil society, science, and intermediary organizations during a workshop
- Participants diveded into five groups with the different expertise being equally represented in each group

Method: Simulation game

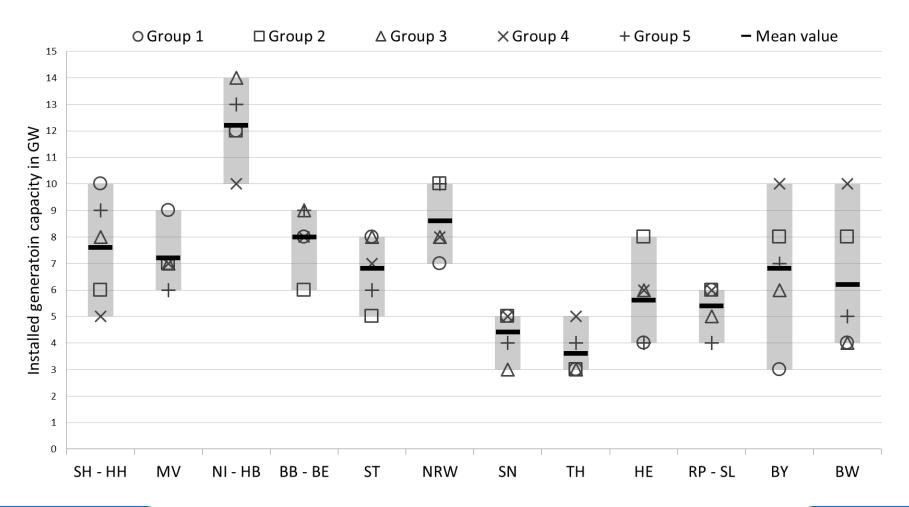


Analysis of criteria ranking

Sources for evaluation

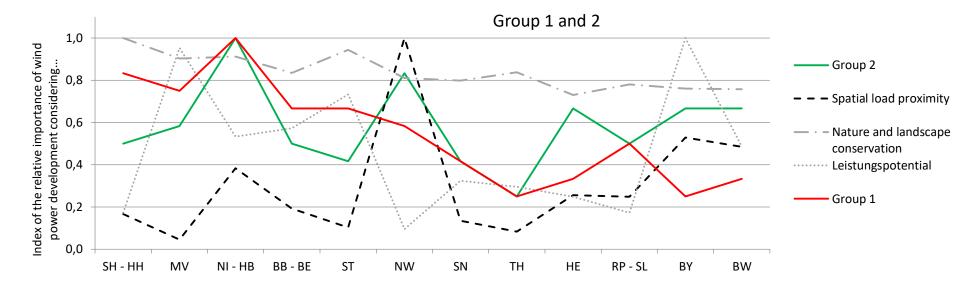
- Self-reported group ranking of sustainability criteria
- Transcribed group discussions
- Correlation of quantitative group results with hypothetical allocations that are based on single criteria

Content


Introduction

Method

Results



Allocation of wind power expansion over the five groups

Ranking of sustainability criteria I

Ranking of sustainability criteria II

- Different weights for the four criteria eventuate in different spatial allocations of wind power among states
- Dominance of the trade-off between minimization of power production cost and minimization of grid and system integration cost
- Equal-distribution approach for all groups, but different concepts of equity
- Weak consideration of nature and landscape conservation criterion

Content

Introduction

Method

Results

Implications for modelling

- Results of conventional multi-criteria decision analyses aggregating over multiple sustainability criteria not very reliable (primarily useful as tools for practitioners)
- Important for future research:
 - More trade-off analyses comparing different mono-criterion optimizations in a consistent framework
 - Identification of robust "no-regret sites" drawn in any monocriterion optimization

Implications for policy-making

- Minimum requirement: transparency of criteria ranking underlying political decisions on wind power allocation
- Societal consensus needed regarding which criteria should matter more or less for the spatial allocation of wind power
- **Participation** of all relevant stakeholders in policy-making:
 - Multi-level governance and participatory decision-making
 - Critical revision of developments to centralize decisions and to allocate more competencies to executive and judiciary branches of government

Thank you for your kind attention!

Paul Lehmann lehmann@wifa.uni-leipzig.de

Junior Research Group MultiplEE https://home.uni-leipzig.de/multiplee

> Follow us on Twitter: @pleh_mann