

The Valuation of Crack Spread Options with Jumps: Univariate Approach

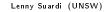
Lenny Suardi

16th IAEE European Conference, Aug. 26th, 2019

Supervised by Dr. David Colwell Assoc. Prof. Ramaprasad Bhar

Outline

- Introduction
 - Overview
 - Motivation
- Literature review
- ③ Univariate European crack spread options model with jumps
 - Univariate model with jumps
 - Option prices formula of popular existing univariate models
- ④ Empirical Results
 - Data
 - Cointegration and mean reversion
 - Calibration
- 5 Conclusions
- 6 Conclusiom
- 7 Further Research
- 8 References



Introduction

- Introduction
 - Overview
 - Motivation
- 2 Literature review
- Univariate European crack spread options model with jumps
 Univariate model with jumps
 - Option prices formula of popular existing univariate models

4 Empirical Results

- Data
- Cointegration and mean reversion
- Calibration
- 5 Conclusions
- 6 Conclusiom
- 7 Further Research
- 8 References

Overview

Crack spread

A difference between future prices of refined products and crude oil

- Determine the margin of refiners
- Used to manage the price risk spread
- Written as a crude-to-product ratio
- Traded at NYMEX

Crack spread options

Figure: Heating Oil/WTI Crack spread from December 2014 to June 2017

- Included in class of spread options
- Introduced at 1994
- Hedging margin
- Most liquid crack spread options: NY Harbour ULSD (heating oil) and NY Harbour RBOB (unleaded gasoline)

2019

4 / 38

```
Lenny Suardi (UNSW)
```

The specific characteristics of energy market

Figure: HO, WTI, and HO/WTI Crack spread from December 2014 to June 2017

- Possibility of jumps
- Volatile underlying assets and crack spread
- Cointegration relationships between crude oil prices and heat contegration

2019

5/38

The extension of existing valuation framework

- The application of option pricing on energy markets
- Addressing the specific spot model of commodity assets
- Comparing the univariate and explicit approach performances
- Most studies on crack spread options are European type
- Numerical approach on crack spread option pricing

Literature review

- Introduction
 - Overview
 - Motivation

Literature review

- Univariate European crack spread options model with jumps
 Univariate model with jumps
 - Option prices formula of popular existing univariate models

4 Empirical Results

- Data
- Cointegration and mean reversion
- Calibration
- 5 Conclusions
- 6 Conclusiom
- 7 Further Research
- 8 References

Characteristics of commodity market

- Mean reverting (Bessembinder et al., 1995)
- Seasonality (Back et al., 2013; Paschke and Prokopczuk, 2007)
- Spot price model (Gibson and Schwartz, 1990; Schwartz and Smith, 2000)
- Cointegration (Duan and Pliska, 2004; Duan and Theriault, 2007; Dempster et al., 2008; Farkas et al., 2017)
- Jumps (Hilliard and Reis, 1999; Hilliard and Reis, 1998; Kyriakou et al., 2016)
- Stochastic volatility (Brooks and Prokopczuk, 2013; Chen and Ewald, 2017)

Valuation of spread option

- European spread option (Margrabe, 1978; Poitras, 1998; Carmona and Durrleman, 2003; Dempster and Hong, 2002; Duan and Pliska, 2004)
- European crack spread option (Mbanefo, 1997; Duan and Theriault, 2007; Dempster et al., 2008; Mahringer and Prokopczuk, 2015; Farkas et al., 2017; Aba Oud and Goard, 2016)
- American spread option (Jackson et al., 2007; Jaimungal and Surkov, 2008; Ziveyi, 2011; Chiarella and Ziveyi, 2013)
- American crack spread option (Mahringer and Prokopczuk, 2015)

Univariate and explicit models of spread options

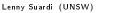
- Univariate models (Dempster et al., 2008)
- Explicit models (Margrabe, 1978; Shimko, 1994; Carmona and Durrleman, 2003; Mbanefo, 1997; Alexander and Venkatramanan, 2007; Duan and Pliska, 2004; Duan and Theriault, 2007; Nakajima and Ohashi, 2012; Farkas et al., 2017)
- Comparing two models (Mahringer and Prokopczuk, 2015; Aba Oud and Goard, 2016)

Univariate European crack spread options model with jumps

- 1 Introduction
 - Overview
 - Motivation
 - Literature review
- Univariate European crack spread options model with jumps
 Univariate model with jumps
 - Option prices formula of popular existing univariate models

4 Empirical Results

- Data
- Cointegration and mean reversion
- Calibration
- 5 Conclusions
- 6 Conclusiom
- 7 Further Research
- 8 References



Spread option and cointegration

• Spread option

Let S_1 and S_2 are two asset price processes, K is the strike price, at

maturity T, pay off function of European spread call option:

$$\max((S_1(T)-S_2(T)-K),0)$$

Cointegration

Let $\mathbf{Y}_1(t)$ and $\mathbf{Y}_2(t)$ (*t* denotes time) are two variables, then the non stationary time series $\mathbf{Y}_1(t)_{t\in\tau}$ and $\mathbf{Y}_2(t)_{t\in\tau}$ are said to be cointegrated if the linear combination

$$\mathbf{Y}_{1}(t) - lpha \mathbf{Y}_{1}(t)_{t \in au}$$

stationary for some $\alpha \in \mathbb{R}$

 The spread should be modelled directly if cointegration relation exists (Dempster et al., 2008))

2019

12 / 38

```
Lenny Suardi (UNSW)
```

The spot price model

• Let the spot spread process x and the long run factor y under the risk neutral measure satisfy:

$$d\mathbf{x}_{t} = [k(\theta + \varphi(t) + y_{t} - x_{t})dt + \sigma d\mathbf{W}$$
$$d\mathbf{y}_{t} = (-k_{2}y_{t})dt + \sigma_{2}d\mathbf{W}_{2} \qquad (1)$$
$$\mathsf{E}[d\mathbf{W}d\mathbf{W}_{2}] = \rho dt$$

where x and y are two latent factors with, long run means θ and 0. The k and k_2 are mean reversion speeds.

• The seasonality function $\varphi(t)$ induced by

$$\varphi(t) = \sum_{i=1}^{K} [\alpha_i \cos(2\pi i t) + \beta_i \sin(2\pi i t)]$$
(2)

with α_i and β_i are constants. The dynamics of the spot spread \mathbf{x}_t as reverting to a stochastic long run mean $\theta + \mathbf{y}_t$. Lenny Suardi (UNSW)

The option price (1)

• The two factor model futures spread:

$$F_{s}(t, T; x_{t}) = x_{t} e^{-k(T-t)} + \theta [1 - e^{-k(T-t)}] \frac{y_{t}k}{k - k_{2}} [e^{-k_{2}(T-t)} - e^{k(T-t)}] + G(t, T).$$
(3)

• The European call option price:

$$C(F_s,t) = B \frac{b_s}{\sqrt{2\pi}} \exp\left[-\frac{(F_s - K)^2}{2b_s^2}\right] + B(F_s - K)\phi\left(\frac{F_s - K}{b_s}\right) \quad (4)$$

where B is the price of discount bond, and F_s and b_s , respectively are the market observed futures spread and standard deviation of futures spread.

The option price (2)

The standard deviation b_s is given by:

$$b_s := \sqrt{A_1^F + A_2^F + 2\rho A_3^F} \tag{5}$$

2019

15 / 38

where

$$\begin{aligned} A_{1}^{F} &:= \frac{\sigma^{2}}{2k} \left[e^{-2k(T-R)} - e^{-2k(T-t)} \right], \\ A_{2}^{F} &:= \frac{k^{2}\sigma_{2}^{2}}{(k-k_{2})^{2}} \left(\frac{1}{2k_{2}} \left[e^{-2k_{2}(T-R)} - e^{-2k_{2}(T-t)} \right] + \frac{1}{2k} \left[e^{-2k(T-R)} - e^{-2k(T-t)} \right] \right) \\ &- \frac{2}{(k+k_{2})} \left[e^{-(k_{2}+k)(T-R)} - e^{-(k_{2}+k)(T-t)} \right] \right), \\ A_{3}^{F} &:= \frac{k\sigma\sigma_{2}}{k-k_{2}} \left(\frac{1}{k+k_{2}} \left[e^{-(k+k_{2})(T-R)} - e^{-(k+k_{2})(T-t)} \right] \right) \\ &- \frac{1}{2k} \left[e^{-2k(T-R)} - e^{-2k(T-t)} \right] \right) \end{aligned}$$

Univariate model with jumps (1)

Jumps component is modelled in the futures prices dynamics
The futures prices process

$$dF_J(t,t+\tau) = dF(t,t+\tau) + zdq_t - \lambda \mu_z dt$$
(6)

where q_t is a Poisson process with intensity λ , and the jump sizes, z are normally distributed with mean μ and standard deviation δ .

• The probability that futures price will be greater than exercise prices K, at the futures maturity T, conditional on $q_T = n$

$$P\{F_J(T, T + \tau) > K | q_T = n\}$$

$$= P\{a_s + \mu_z(n - \lambda T) + b_s \varepsilon_x + \delta \sum_{i=1}^n \varepsilon_i > K\}$$

$$= P\{\frac{a_s - K + \mu_z(n - \lambda T)}{b_s^2 + n\delta^2} > -\varepsilon\}$$

$$= P\{d_2(n) > -\varepsilon\}$$

Lenny Suardi (UNSW)

2019 16/38

Univariate model with jumps (2)

 ε is a standard normal random variable and ε_x, ε₁, ..., ε_n are independent and standard normal random variables.

$$P\{d_2(n) > -\varepsilon\} = N(d_2(n)).$$
(7)

• Conditional on n jumps, the F_{JT} is normally distributed with mean and standard deviation

$$a_s(n) := a_s + \mu_z(n - \lambda T) \tag{8}$$

and standard deviation

$$b_s(n) := \sqrt{b_s^2 + n\delta^2} \tag{9}$$

We have,

$$E[\varepsilon 1_{\{d_2(n) > -\varepsilon\}}]$$

$$= \int_{-d_2}^{\infty} \frac{\varepsilon}{\sqrt{2\pi}} e^{-\frac{1}{2}\varepsilon^2} d\varepsilon$$

$$= \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(d_2(n))^2\}.$$

$$\sup_{\alpha \in \mathbb{R}^{d_2}} \sup_{\alpha \in \mathbb{R}^{$$

2019

17 / 38

 The price of call option price that expires at time R on a futures spread that expires at time T, c_J, at time t is given by

$$c_{J} = \sum_{n=0}^{\infty} Prob(n)BE[(F_{JT} - K)^{+} | q_{T} = n]$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\lambda R} (-\lambda R)^{n}}{n!} BE[(F_{JT} - K)^{+} | q_{T} = n]$$

$$= B \sum_{n=0}^{\infty} \frac{e^{-\lambda R} (-\lambda R)^{n}}{n!} E[(F_{JT} 1_{\{(F_{JT} > K\}} | q_{T} = n] - KE[1_{\{(F_{JT} > K\}} | q_{T} = n]]$$

$$= B \sum_{n=0}^{\infty} \frac{e^{-\lambda R} (-\lambda R)^{n}}{n!} (a_{s}(n))N(d_{2}(n)) + b_{s}(n) \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(d_{2}(n))^{2}\} - KN(d_{2}(n))$$

$$= B \sum_{n=0}^{\infty} \frac{e^{-\lambda R} (-\lambda R)^{n}}{n!} (a_{s}(n) - K)N(d_{2}(n)) + b_{s}(n) \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(d_{2}(n))^{2}\}$$

The popular existing univariate models (1)

Bachelier model (ABM)

$$C(F_{s},t) = e^{-r(T-t)} \left[(F_{s} - K)N(u) + \frac{\sigma\sqrt{T-t}e^{-\frac{u^{2}}{2}}}{\sqrt{2\pi}} \right], \quad (10)$$

where $u = \frac{F_s - K}{\sigma \sqrt{T - t}}$ and $N(\cdot)$ is the cumulative standard normal distribution function. $\sigma^2 = \sqrt{(a\sigma_1)^2 - 2ab\rho\sigma_1\sigma_2 + (b\sigma_2)^2}$.

Black-Scholes model (GBM) •

$$C(F_s, t) = e^{-r(T-t)} \left[F_s N(d_1) - K N(d_2) \right]$$
(11)

Rusees School

19/38

where
$$d_1 = \frac{\ln(\frac{F_s}{K}) + \frac{\sigma^2}{2}(T-t)}{\sigma\sqrt{T-t}}$$
 and $d_2 = d_1 - \sigma\sqrt{T-t}$.

The popular existing univariate models (2)

• Schwartz one-factor model By assuming that $\sigma(t, T) = \sigma e^{-\eta(T-t)}$, the call option price formula is:

$$C(F_s, t) = e^{-r(T-t)} \left[F_s N(d_1) - K N(d_2) \right]$$
(12)

where

$$egin{aligned} d_1 &= rac{\ln(rac{F_s}{K}) + rac{w^2}{2}(T-t)}{w\sqrt{T-t}}, \ d_2 &= d_1 - w\sqrt{T-t} \quad ext{and} \ w^2 &= rac{\sigma^2}{2\eta(T-t)}(1-e^{-2\eta(T-t)}) \end{aligned}$$

< ▷ < ▷ < ≥ > < E UNSW
 Business School
 2019
 20/38

Empirical Results

- 1 Introduction
 - Overview
 - Motivation
- 2 Literature review
- Univariate European crack spread options model with jumps
 Univariate model with jumps
 - Option prices formula of popular existing univariate models

4 Empirical Results

- Data
- Cointegration and mean reversion
- Calibration

5 Conclusions

- 6 Conclusiom
- 7 Further Research
- 8 References

Data

• Cointegration and mean reversion test: futures prices

- source: Reuters datastream
- type: daily crude oil and Heating oil futures prices
- period: January 2009 May 2011
- Call option prices calibration: option prices
 - source: New York Merchantile Exchange (NYMEX)
 - type: daily Heating oil crack spread call option closing prices
 - period: February 2010 to April 2011

Statistics of futures prices data

The comparison of 1 month and 1 year futures spread

Figure: 1 month futures spread vs 1 year futures spread

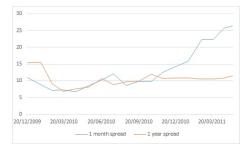


Figure: This figure shows the comparison of 1 month and 1 year futures spread within December 2009 to June 2011

Cointegration and mean reversion test

۲	Johansen	cointegration	test
---	----------	---------------	------

Hypothesized No. of CE(s)	Eigenvalue <i>p — value</i> *	$p-v_{c}$	alue**
None*	0.3519	0.0324	0.0419
At most 1	0.0567	0.1586	0.1586

• Mean reversion test: estimating the regression model

$$\chi_L - \chi_S = \zeta + \gamma \chi_S + \varepsilon, \tag{13}$$

where χ_L and χ_S are, respectively, 1 year and 1 month spread level and ϵ is a noise term.

Table: Regression of mean reversion test

Maluan			
Values	9.61 -0.93		
t-Stat.	7.64 -10.91		
R-square 8	8.15%		🎩 UNSW 🔤

2019

24 / 38

Option prices summary

- Two groups of day to maturity, (R t): M_1 is for $(R t) \le 60$ days and M_2 is for (R t) > 60 days.
- Data summary

Call Put M_1 M_{2} All M_2 All M_1 Number of observation 573 1159573 870 1443 586 0.92 Average option price 1.82 1 44 1 63 0.58 114 Average spread prices 14.12 11.1712.67 13.76 18.51 16.62

Table: Statistics of sample observation

Minimizing the sum squared errors

- Let C_i and \hat{C}_i are be the market and estimated prices of the crack spread call options contract *i*.
- e_i is the error of contract i, i.e.

$$e_i = \hat{C}_i - C_i.$$

• With $\theta(j)$ be the parameter vector for group M_j , j = 1, 2, for each pricing formula, the objective function is:

$$\min SSE(\theta(j)) = \sum_{i=1}^{N_j} e_i^2.$$
(14)

2019

26 / 38

for prices data ($i = 1...N_j$, where N_j is the number of observations in group M_j .

Model comparison

• The sum of squared errors

For each group, M_1 and M_2 , the sum of squared error (SSE) is used to compare errors in the performance of each model:

$$SSE = \sum_{i=1}^{N_j} (\hat{C}_i - C_i)^2, \quad j = 1, 2.$$
 (15)

The adjusted root mean squared errors
 For q is the number of pricing formula, the adjusted root mean squared errors is given by:

$$ARMSE = \sqrt{\frac{1}{N_j - q} \sum_{i=1}^{N_j} (\hat{C}_i - C_i)^2}, \quad j = 1, 2$$
(16)

Estimated parameters, SSE and ARMSE for call option (1)

Estimated	ABM	GBM	1-F Schwatrz	2-F	Dempster	2-F	Dempster
parameters					·	with	Jumps
$M_1(1 \leq (R))$	$(-t) \leq 60, \Lambda$	$I_1 = 586$ of	oservations)				
σ	10.2127	0.7320	0.835	5			
η			2.679	1			
k_1					1.741	6	10.1379
k_2					6.813	5	12.2175
σ_1					9.010	1	9.4747
σ_2					8.342	1	14.4978
ρ					-0.280	4	-0.7985
μ							0.6324
δ							4.9156
λ							1.3366
SSE	16.053	17.791	6 16.717	'4	15.037	4	14.2145
ARMSE	0.1656	0.1743	3 0.169	0	0.160	3 🚦	₹ L Q.1/5 58
				4			Busmess School
Lenny Suard	li (UNSW)					2	019 28 / 38

Estimated parameters, SSE and ARMSE for call option (2)

Estimated	ABM (GBM	1-F Schwatrz	2-F Dempster	2-F Dempster
parameters					with Jumps
$M_2((R-t)$	> 60, N ₂ =	= 573 ob	servation)		
σ	7.9996	0.6659	0.6659	Ð	
η			()	
k_1				3.938	8 2.3375
k_2				0.592	1 0.0155
σ_1				14.140	0 7.0196
σ_2				20.943	2 12.4432
ho				-0.656	4 -0.8221
μ					0.6162
δ					4.1271
λ					2.6819
SSE	17.6996	35.5006	5 35.500) 15.675	0 12.7282
ARMSE	0.1758	0.2490	0.248	4 0.165	50.1491
					✓ Ξ ▷ < Busñess School
Lenny Suardi	(UNSW)				2019 29/38

Estimated parameters, SSE and ARMSE for put option (1)

Estimated	ABM	GBM	1-F Schwatrz	2-F Dem	pster 2	2-F Dempster
parameters					-	with Jumps
$\overline{M_1(1 \leq (R))}$	$(-t) < 60, \Lambda$	$I_1 = 573 \text{ o}$	bservations)			
σ	9.5771	0.686		6		
η			5.458	7		
k_1					0.6214	3.7459
k2					3.2013	1.5114
σ_1				1	0.6954	9.5758
σ_2					9.2141	2.2650
ρ				-	0.4936	-0.3542
μ						-0.0922
δ						6.1673
λ						0.8290
SSE	17.7718	26.587	2 23.762	4 1	6.7249	16.4322
ARMSE	0.1500	0.183	5 0.173	4	0.1455	\mathbb{R}_{1}
				< □ ▶ <		Business School
Lenny Suard	li (UNSW)					2019 30/38

Estimated parameters, SSE and ARMSE for put option (2)

Estimated	ABM	GBM	1-F Schwatrz	2-F Dempster	2-F Dempster
parameters					with Jumps
$M_2((R-t))$	$) > 60, N_2 =$	= 870 obs	servation)		
σ	8.4221	0.5084	0.690	5	
η			1.286	5	
k_1				5.514	7 2.2671
k_2				0.813	5 0.7493
σ_1				16.409	2 3.3306
σ_2				16.145	8 8.5076
ρ				-0.542	8 -0.2495
μ					-0.038
δ					8.3559
λ					1.2479
SSE	89.1103	73.1199	49.040	l 76.272	8 44.5769
ARMSE	0.3206	0.2904	0.2378	3 0.296	6 _0.2267
					✓ ■ ► < ■ UNSW ▲ ★
Lenny Suardi	(UNSW)				2019 31/38

Market - models prices comparison and moneyness

Market and models prices comparison

 The average signed percentage error, SPE For each option prices, the SPE is given by

$$SPE = \frac{\hat{C}_i - C_i}{C_i} \times 100\%$$
(17)

• The average unsigned percentage error, UPE For each option prices, the UPE is given by

$$UPE = \left| \frac{\hat{C}_i - C_i}{C_i} \right| \times 100\%$$
(18)

2019

32 / 38

Moneyness, $M = ln \frac{F_s}{K}$, group:

- in the money: M > 0.05
- at the money: $-0.05 \leq M \leq 0.05$
- out the money: M < -0.05

Market-model comparisons based on SPE and UPE for call option

Model		Av. SPE		Av. UPE		
	OTM .	ATM I	ТМ	OTM /	АТМ	ITM
$M_1(1 \leq (R - $						
ABM	-0.78%	-0.94%	0.27%	29.58%	16.72%	4.76%
GBM	-23.92%	-3.26%	-2.56%	29.26%	16.64%	5.41%
1-F Schwatrz	-17.71%	0.68%	-2.04%	26.31%	14.81%	4.96%
2-F Dempster	4.46%	2.08%	0.71%	28.67%	16.39%	4.53%
2-F Dempster	5.39%	-0.28%	1.25%	26.87%	16.83%	4.31%
with Jumps						
$M_2((R-t) > $	> 60)					
ABM	-2.98%	1.10%	-2.40%	15.94%	7.84%	7.18%
GBM	-10.30%	-0.14%	7.05%	25.96%	7.38%	7.37%
1-F Schwatrz	-10.30%	-0.14%	7.05%	25.96%	7.38%	7.38%
2-F Dempster	-2.86%	0.78%	-2.47%	13.97%	7.12%	7.48%
2-F Dempster	5.41%	-0.83%	-0.12%	13.10%	6.39%	5.74%
with Jumps						Busmess Scho

Lenny Suardi (UNSW)

2019 33/38

Market-model comparisons based on SPE and UPE for put option

$\begin{tabular}{ c c c c c }\hline \hline OTM \\ \hline $M_1(1 \le (R-t) \le 60)$ \\ ABM & 2.81% \\ GBM & -24.64% \\ $1-F$ Schwatrz & -21.00% \\ $2-F$ Dempster & 6.53% \\ $2-F$ Dempster & 11.99% \\ \hline $with $Jumps$ \\ \hline $M_2((R-t) > 60)$ \\ \hline \end{tabular}$		ITM	ΟΤΜ	ATM	ITM
ABM 2.81% GBM -24.64% 1-F Schwatrz -21.00% 2-F Dempster 6.53% 2-F Dempster 11.99% with Jumps	/ 6500/				
GBM -24.64% 1-F Schwatrz -21.00% 2-F Dempster 6.53% 2-F Dempster 11.99% with Jumps	/ 6 E O Ø/				
1-F Schwatrz -21.00% 2-F Dempster 6.53% 2-F Dempster 11.99% with Jumps	0 -0.30/0	-5.88%	39.80%	20.72%	8.14%
2-F Dempster 6.53% 2-F Dempster 11.99% with Jumps	6 -11.41%	-8.88%	57.92%	25.55%	8.88%
2-F Dempster 11.99% with Jumps	6 -4.95%	-4.97%	56.26%	17.93%	6.34%
with Jumps	6 2.22%	-2.97%	40.64%	20.56%	7.93%
	6 -0.57%	-4.00%	39.26%	21.34%	8.30%
$\overline{M_2((R-t)>60)}$					
ABM -24.66%	6 11.86%	10.55%	45.07%	17.67%	11.06%
GBM -9.53%	6 -9.74%	-9.42%	28.35%	17.37%	11.70%
1-F Schwatrz -0.45%	6 1.91%	-2.75%	21.68%	15.62%	6.78%
2-F Dempster -24.43%	6 5.57%	4.87%	41.11%	12.35%	7.19%
2-F Dempster 5.28%	6 -4.49%	4.60%	18.38%	11.50%	7.48%
with Jumps					😹 UNSW 🛛

2019

34 / 38

C on clu sion s

- 1 Introduction
 - Overview
 - Motivation
- 2 Literature review
- Univariate European crack spread options model with jumps
 Univariate model with jumps
 - Option prices formula of popular existing univariate models

4 Empirical Results

- Data
- Cointegration and mean reversion
- Calibration

5 Conclusions

- 6 Conclusiom
- 7 Further Research
- 8 References

Conclusion

- We proposed univariate crack spread option model with jumps that address cointegration
- The empirical analysis on futures prices shows the existence of cointegration relationship between futures prices of crude oil and heating oil.
- The two-factor Dempster with jumps model outperforms other models in short and long term time to maturity.
- Our proposed model also provide a lowest unsigned percentage error compare to other model for longer time to expiry.

Further Research

The further research covers:

- The cracks spread option pricing with explicit approach,
- The american crack spread option pricing

Further Research

Terima kasih

Thank you

References

References

- Aba Oud, M. and Goard, J. (2016). Analytic approximation formulae for european crack spread options. Quantitative Finance, 16(5):711–725.
- Alexander, C. and Venkatramanan, A. (2007). Analytic approximations for spread options.
- Back, J., Prokopczuk, M., and Rudolf, M. (2013). Seasonality and the valuation of commodity options. Journal of Banking & Finance, 37(2):273–290.
- Bessembinder, H., Coughenour, J. F., Seguin, P. J., and Smoller, M. M. (1995). Mean reversion in equilibrium asset prices: evidence from the futures term structure. *The Journal of Finance*, 50(1):361–375.
- Brooks, C. and Prokopczuk, M. (2013). The dynamics of commodity prices. Quantitative Finance, 13(4):527–542.
- Carmona, R. and Durrleman, V. (2003). Pricing and hedging spread options. Siam Review, 45(4):627-685.

Chen, J. and Ewald, C. (2017). Pricing commodity futures options in the schwartz multi factor model with stochastless School Lenny Suardi (UNSW) 2019 38/38