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Energy system transition – Investment required

Total investment needed for different scenarios

RTS =Reference Technology Scenario 

(today’s commitment + pledged NDCs) 

2DS = 2 Degree Scenario 

(70% reduction)

B2DS = Beyond 2 Degree Scenario 

(carbon neutral)

International Energy Agency. Energy Technology Perspectives. Paris: IEA; 2017.



Optimization model

• A central system planner

• Perfect information and perfect foresight

• Total system cost minimization

Equilibrium model

• Explicit representation of agents

• Agents are fully rational 

• Equilibrium is beforehand assumed to exist

Agent-based model

• Explicit representation of agents

• Agents are not necessarily fully rational

• Equilibrium is not pre-assumed to exist
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Long-term planning models in power systems



 Electricity market is a complex adaptive system

• Highly non-linear due to the interactions (e.g. crowd effect) and feedbacks (e.g. rivals’ investment changes 

market price). Among agents and with environment

• The system capacity mix and the agents’ generator portfolio are constantly changing due to interactions and 

environmental change (e.g. policy landscape)

• Generation companies / agents are heterogeneous and adapt to the change by alternating investment decisions

 Agents-based modeling can capture important factors that traditional models have difficulties with

• Bounded rationality

• Behavioral factors

• Risk averseness
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Why agent-based modeling 
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How can we get price projection properly?
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Existing price projection methods
Classification Name Short description Pros and cons

Direct 

predicting

Monotonously increasing
The electricity price will grow following 

a certain rate (risk-free interest rate).

• Easy implementation.

• Price volatility ignored

• Agents’ investment influence ignored

Stochastic time change
Based on financial theories originally 

used to predict stock price. 

• Volatility included.

• Long-term accuracy not guaranteed.

• Agents’ investment influence ignored

Exogenous capacity mix
Based on capacity mix from existing 

literatures or reports

• Better transparency

• Easy implementation

• Agents’ investment influence ignored

Fundamental 

predicting

Myopic agent

Consider existing capacity and 

planned decommissioning. 

Look at a limited look-ahead horizon.

• Easy implementation.

• Part of future information lost.

Scenario trees
Future rivals’ investment is 

represented by scenarios

• Increased robustness facing look-ahead horizon change.

• Results can change drastically as the probability associated 

with scenario changes.

• Probabilities determination is difficult to justify

Borovkova, S. and Schmeck, M.D., 2017. Electricity price modeling with stochastic time change. Energy Economics, 63, pp.51-65.

Chappin, E.J., de Vries, L.J., Richstein, J.C., Bhagwat, P., Iychettira, K. and Khan, S., 2017. Simulating climate and energy policy with agent-based modelling: The Energy 

Modelling Laboratory (EMLab). Environmental modelling & software, 96, pp.421-431.

Conzelmann, G., Boyd, G., Koritarov, V. and Veselka, T., 2005, June. Multi-agent power market simulation using EMCAS. In IEEE Power Engineering Society General Meeting, 2005 

(pp. 2829-2834). IEEE.
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Fundamental predicting 1: myopic agent

Future investment expectation is missing -> reduce the look-ahead horizon
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Fundamental predicting 2: scenario tree
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Fundamental predicting 2: scenario tree

 What are the expected capacity that they will build?

Scenario tree for uncertainties in load growth, hydro power conditions and competitors’ expectations

Conzelmann, G., Boyd, G., Koritarov, V. and Veselka, T., 2005, June. Multi-agent power market simulation using EMCAS. In IEEE Power Engineering Society General 

Meeting, 2005 (pp. 2829-2834). IEEE.

 What are the probabilities and technology types?
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Fundamental predicting 3: GEP (as optimization model)
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Fundamental predicting 3: The GEP

s.t.
Energy balance (of each time step)

Installed capacity

Decommission (n-> lifetime)

Production

Fixed cost Variable cost Load shedding cost

Investment constraints
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The long-run equilibrium 

• Base: 7472 MW

• Mid: 3638.25 MW

• Peak: 2380.25 MW

• VoLL: 3000 €/MWh

• Total installed: 13490.5 MW

• Maximum load: 13670 MW



• Agent-based model should reach long-run equilibrium as long as we don’t 

introduce bounded rational behaviors (e.g. a priori belief).

• In the following slides, we’ll compare the simulation results of myopic agent 

and GEP price projection method.
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Expectations from agent-based model 
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System capacity mix with agents’ sight length

1. The longer the agents’ sight length, the more overinvestment will be placed due to improper future capacity projection.

2. Mainly overinvestment in the peak-load technology

An example of capacity mix projection without considering future 

investment (look-ahead horizon = 20 years)
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Simulation results – ABM+OPT (GEP for price projection)

Base/Mid/Peak: 7500/3700/2300 MW

1. The simulation results are robust when agents’ look-ahead horizon changes 

2. Assuming rational agents and perfect foresight, the model can reach equilibrium

An example of capacity mix projection considering future 

investment (look-ahead horizon = 20 years)
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• Results of existing ABMs are sensitive to the assumptions made in the price 

projection methods. Existing price projection methods are either non-transparent

or introduce implicit biases.

• Our integrated ABM-OPT framework is transparent and preserves the flexibility 

of ABMs without introducing unintended biases.

• Agent-based framework can be used to compute the long-run equilibrium, but 

has more flexibility to also account for behavioral aspects.
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Conclusions



Thank you for your attention

Contact:

Zhenmin Tao
zhenmin.tao@kuleuven.be

Jorge Andres Moncada Escudero
jorgeandres.moncadaescudero@kuleuven.be
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Appendix
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Appendix I - Modeling settings (deterministic)

 Agent properties

• 5 homogeneous Agents (GenCos) 

 Technologies

• Belgian load profile 2015, with hourly resolution. Assumed to be unchanged in the future.

 Load

Technologies Unit capacity (MW) Life expectancy (y) VOM(€/MWh) + Fuel price / efficiency FOM(€/kWa) Capital cost (€/kW)

Base 100 20 5 + 0.3/0.34 115 1500

Mid 100 20 4+4/0.42 75 1200

Peak 100 20 4 + 18.4/0.48 50 800

 Simulation horizon

• 30 years

• Representative days (1 year = 12 representative days)

• Agents are allowed to invest every 5 years



• Equilibrium model

• Maximize agent utility

• Subject to constraints (e.g. market equilibrium, technical constraints)
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Appendix II - Mainstream normative approaches

• Optimization model

• Minimized the total cost of the energy provision

• Subject to constraints (e.g. system constraints, RES target, technical 

constraints)

Explicit representation of 

agents
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Appendix III - Normative vs. descriptive

Descriptive and normative

Macal, 2016 - Everything you need to know about agent-based modelling and simulation Journal of Simulation, 10, 144 – 156
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Appendix IV – Representative days

An example of the representative days in TIMES model
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Appendix V – Virtual auction simulation
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Appendix VI – Empirical findings on behavioral factors
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Behavioral factors matters

• Evidence 1 – Perceived stability of various instruments

Exact question: How likely would you consider the following types of investment incentives, once enacted, to stay in 

effect long enough to influence long-term investment planning?

Barradale, M.J., 2010. Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit. Energy 

Policy, 38(12), pp.7698-7709.
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Behavioral factors matters
• Evidence 2 – Correlation between RE share and several behavioural factors

Masini, A. and Menichetti, E., 2013. Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technological 

Forecasting & Social Change Investment, 80, pp.510-524. 
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Factors that affect investment decisions

Risk

perception

Company 

size

Company 

debt ratio

Risk 

preferences

Market 

share

Existing 

portfolio

Technology 

preferences

A-priori

beliefs

Crowd 

effect

Followers

Financial 

support

Operational 

cost

Capital cost

Future 

revenue

Economic factors

Agent heterogeneity (behavioural)

Network effect (behavioural)



Faculty of Engineering Science, Department of Mechanical Engineering, Division TME35

Appendix VII – Why we need investment constraints?



• In a already balanced system, all potential investment would not be profitable

• Investment constraints are used to incentivize agents to invest and this 

incentive should be as close to reality as possible

• So we keep a very small scarcity gap in the system so that agents are 

incentivized to invest.
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Appendix VII – Why we need investment constraints?
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Appendix VII – Why we need investment constraints?
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Appendix VIII – Why overinvestment?



Year 25
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Look-ahead horizon = 20

Year 5

Year 30Year 10

Year 35Year 15

Year 40Year 20

Projected capacity mix: [0        ,0         ,0        ,0] (4 milestone years) , inv. = 13490 MW, dec. = 0

Projected capacity mix: [13490, 13490, 13490,0] (4 milestone years) , inv. = 13490 MW, dec. = 0

Projected capacity mix: [26980, 26980, 13490,0] (4 milestone years) ,inv. = 13490 MW, dec. = 0

Projected capacity mix: [40470, 26980, 13490,0] (4 milestone years), inv. = 13490 MW, dec. = 0

Year 45Year 25 Projected capacity mix: [40470, 26980, 13490,0] (4 milestone years), inv. = dec. = 13490 MW

The capacity mix projection can only expect zero 

scarcity when there is always 4 times the max load 

in the system which are build in year [-15,-10,-5,0]. 

(Present year = 0) 


