Who does innovation in the Electricity Supply Industry? Lessons from the UK

Geoffroy Dolphin¹, Michael Pollitt¹

¹Judge Business School, University of Cambridge

August 28, 2019 IAEE European Conference Ljubljana, Slovenia Carbon Pricing Motivation

Motivation

Observation

- ► Energy transition requires a *sustained* stream of innovation
- Yet.
 - innovation in the ESI (generation) has slowed down in recent years
 - the nature of innovative actors has changed

Context: two major shocks in the ESI

- ▶ liberalisation: Electricity Act (UK, 1989), Energy Policy Act (US, 1992)
- ▶ decarbonisation: e.g. in the UK 2001/77/EC, with effect 27/10/2003
 - ▶ Electricity produced from renewable sources rose from 3.5% in 2000 to 24.6% in 2016
 - CO2-intensity of the generation portfolio from 479g CO2/kWh to 349g CO2/kWh
 - CO2-intensity of the generation portions from 473g CO2/kvvn to 343g CO2/kvvn

Focus

- "Actors" performing that innovation in Electricity Supply Technologies
 - Original equipment manufacturers upstream
 - ► Generation, Transmission, Distribution downstream
- ▶ in the UK, 1955-2016
- heterogeneity of UK OEMs

Questions

- ▶ Has the origin of innovation (patent filings) changed over time? If yes, how so?
- What is the nature of the heterogeneity of (new) innovative actors? How does it affect their innovation activity?

Patent flow

Patent stock

 $\underset{\text{$\square$ Dataset}}{\mathsf{Carbon Pricing}}$

Dataset

Dataset

Patents

Patent counts, knowledge stock – European Patent Office (EPO) Worldwide Statistical Patents Database (2018)

Business Structure Data

Firm size, ownership, date of incorporation - Bureau van Dijk FAME (2018)

Other

Government R&D, carbon price,...– IEA (2019), own data

Patent search

- Patents with GB priority in IPC classes 'B', 'F', 'G', or 'H' for the years 1955-2017: 354760 patents
- (Machine learning) keywords-based & actor-based (Jamasb and Pollitt (2011), Ofgem register)

Machine learning-keywords search

- 1. Keywords search, based on Jamasb and Pollitt (2011)
- 2. IPC search, based on search results of step 1 59757 patents
- 3. Apply random-forest classifier to patent set identified in step 2

ML procedure – text-based classification

- 1. Select training sample
 - ESI vs non-ESI
 - Random selection of 240 patents (126 ESI; 114 non-ESI). Chosen from keywords-,ipcand all patents ensembles
 - Manual assignment to either ESI or non-ESI class
- 2. Prepare text data for classification
 - 2.1 Structure the text data (application title and abstract).
 - 2.2 Derive normalised word and n-gram frequencies (across all patent applications)
 - 2.3 Select features for classification.
- 3. Train random forest classifier on training sample.

Table: Classification report

	Precision	Recall	f1 score	No of patents in test set (support)
Non ESI	0.77	1	0.87	23
ESI	1	0.81	0.9	37
Avg./total	0.91	0.88	0.88	60

4. Apply trained classifier to "full sample" (i.e. IPC ensemble).

Table: Patent searches summary (1955-2016)

	Actor type	ESI stage	KW	ML	Actors	$ML \cap Actors$	Total
N. Patents	Companies	OEM	2364	3677	-	0	3677
		Generation	2	3	279	3	279
		Transmission	-	0	3	0	3
		Distribution	-	0	13	0	13
	Integrated utilities		10	11	222	11	222
	Universities		19	26	-	-	26
	Individuals		496	696	-	-	696
	EC & AEA		20	87	3189	87	3189
	Other		160	258	24	0	282
	All actors		3072	4759	3731	101	8389
N. applicants/	Companies	OEM	456	658	-	-	658
assignees		Generation	2	2	10	2	13
		Transmission	0	0	2	0	2
		Distribution	0	0	4	1	4
	Integrated utilities		1	1	3	0	4
	Universities		14	18	-	-	18
	Individuals		428	571	-	-	571
	EC & AEA		1	1	2	1	2
-	Other		88	128	3	0	131
	All actors		990 -	1379	24		1400

The number of applicants in the table above is based on an author-created unique entity identifier. It differs from the number of distinct 'psn.id''s associated with the identified patents since, at times, several of them refer to a single legal entity. Some patents that have been manually removed (e.g. motor velhicle internal combustion engine)

Carbon Pricing
Exploratory data analysis

Exploratory data analysis

Whose innovation – upstream, downstream and other actors

What innovation - technological portfolio

Carbon Pricing
Legal entity matching

Legal entity matching

Matching with firm level data (I)

Hurdles

- Variations in spelling of applicant names
- Variations in naming conventions
- Name change of legal entity
- Ownership assignment (subsidiary versus GUO)
- No common identifier nor standard procedure

A brief history

- 1. Bound et al. (1984): on US Patent (USPTO) and firm (Compustat) data
- 2. Magerman et al. (2006): applicant name standardisation (no legal links) \Rightarrow but...
- 3. Bureau van Dijk ORBIS IP: applicant-legal entity matching

Matching with firm level data (II)

- Matching based on (secondary) identifying features such as company names and postcodes +residual manual check.
- Manually assign an identifying number to the applicants that is also present in the business structure/accounting database (e.g. company registration number – CRN).

Manual match

Associate each applicant with their Company Registration Number (CRN)

- 1. Entity name and postcode (ECOOM-EUROSTAT-EPO PATSTAT, 2017)
- 2. Update EEE-PPAT table with Companies House information
- 3. Aggregate at the legal entity-level (not GUO) with CRN and most recent name*
- Merge patent data with firm structure data (employees, turnover,...) based on CRN as merging key

^{*} Note the difference between a merger and acquisition here. If full absorption, then the CRN assigned is that of the absorbing entity. If it continues to exist as a separate legal entity, then assigned a separate CRN.

Matching summary

- ▶ 677 'company' applicants: 428 UK, 180 foreign, 69 unidentified
- 3677 'company' patents: 2925 patents by UK applicants, 604 patents by foreign applicants, 148 patents by unidentified applicants

Table: UK patents/applicants matching summary

	ESI Category	Matched patents	Matched applicants
Count	OEM	2925	411
	Generation	279	13
	Transmission	3	2^+
	Distribution	12	3
	All actors	3241	428
Share*	OEM	0.8	0.62
	Generation	1	1
	Transmission	1	1
	Distribution	0.92	0.75
	All actors	0.88	0.63

^{*} Share of total number of 'COMPANY' applications or applicants.

⁺ Includes NI interconnector

Carbon Pricing

Firm heterogeneity (UK OEMs)

Firm heterogeneity (UK OEMs)

Innovation and technological portfolio

Number of firms (share of total): 36% green, 12% brown, 4% nuclear, 4% mixed − 46% other

Technological entry (and exit)

Table: Firm patenting activity: 1955-2016, firm-year observations

Variable	Firm type	Mean	Median
REN patents	Green	0.023	0
	Brown	-	-
	Nuclear	-	-
	Mixed	0.025	0
	Other	-	-
FF patents	Green	-	-
	Brown	0.04	0
	Nuclear	-	-
	Mixed	0.67	0
	Other	-	-
Year of first REN innovation	Green	2005	2009
	Brown	-	-
	Nuclear	-	-
	Mixed	1972	1961
	Other	-	-
Year of first FF innovation	Green	0.025 - 0.04 - 0.67 - 2005	-
	Brown	1977	1968
	Nuclear	-	-
	Mixed	1963	1956
	Other	-	-

Carbon Pricing

External drivers

External drivers

R&D in the ESI – public

Conclusion

Observations

- Shift of innovation activity to upstream OEMs (in relative terms) and decrease in innovation in renewable generation technologies
- "Lateral" innovation constituded much of innovation activity in Fossil Fuel electricity generation technologies
- 3. Innovation in renewable technologies comes from firm entry rather than reallocation of R&D resources within firms

Policy implications

- 1. Renewed support for renewable generation technologies R&D
- 2. Keep barriers to (technological) entry low
- Policies to sustain innovation in renewable generation technologies should support new (& small) firms

- Acemoglu, D. (2002). Directed Technical Change. *The Review of Economic Studies*, 69(4):781–809.
- Aghion, P., Bloom, N., Blundell, R., Griffith, R., and Howitt, P. (2005). Competition and Innovation: An Inverted-U Relationship. *The Quarterly Journal of Economics*, 120(2):701–728.
- Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R., and Van Reenen, J. (2013). Carbon Taxes, Path Dependency and Directed Technical Change: Evidence from the Auto Industry. Ssrn, 124(1).
- Arrow, K. J. (1962). Economic Welfare and the Allocation of Resources for Invention. In Nelson, R., editor, *The Rate and Direction of Inventive Activity: Economic and Social Factors*, volume 56, pages 191–209. Princeton University Press, Princeton, New Jersey.
- Blundell, R., Griffith, R., and Van Reenen, J. (1995). Dynamic Count Data Models of Technological Innovation. *The Economic Journal*, 105(429):333–344.
- Bound, J., Cummins, C., Griliches, Z., Hall, B. H., and Jaffe, A. B. (1984). Who Does R & D and Who Patents?
- Chakraborty, P. and Chatterjee, C. (2017). Does environmental regulation indirectly induce upstream innovation? New evidence from India. *Research Policy*, 46(5):939–955.
- Gilbert, B. R. J. and Newbery, D. M. G. (1982). American Economic Association Preemptive Patenting and the Persistence of Monopoly. American Economic Review, 72(3):514–526.
- Jaffe, A., Newell, R., and Stavins, R. (2002). Environmental policy and technological change. *Environmental and Resource Economics*, 22(May):41–69.
- Jaffe, A. B. and Palmer, K. (1997). Environmental Regulation and Innovation: A

"The Industry"

- ▶ International industry classification: NAICS, NACE, SIC,...
 - industry of origin rather than destination (use)
 - multiple categories

- Ad hoc definition
 - ► Technology-based (IPC codes, keywords) Noailly and Smeets (2015)
 - Actor-based (e.g. regulated entities) Jamasb and Pollitt (2011)

KW vs ML vs Actor

engine member was a sure portion yalve mean the portion yalve mean the pressure connected allowed the pressure connected all

(a) ML&KW

(b) KW

(c) ML

(d) Actors

(e) Non ESI

