

Philip Tafarte and Paul Lehmann

Trade-offs Associated with the Spatial Allocation of Future Onshore Wind Generation Capacity – a Case Study for Germany

IAEE 2019 Ljubljana, 28.08.2019

Agenda

- Background
- Trade-offs among sustainability criteria
- Model
- Preliminary results
- Conclusion

Background

 Expansion of renewable energy sources reduces negative environmental impacts / costs associated with fossile and nuclear energy production on a global scale (climate change, nuclear accidents, ...)

• Renewable energy sources themself can have negative impacts / costs on the environment on a local to regional scale (noise, landscape, loss of natural habitats, ...)

→ What is the scale of the possible trade-offs among relevant sustainability criteria and how does these trade-offs develop with the further expansion of renewables?

. . .

Sustainablility criteria

Possible sustainability criteria:

Local environmental protection: Nature and species protection

Protection of residents

Soil and aquatic protection Landscape protection

Techno-economic goals: GHG-reductions. REN shares Electricity generation costs Security of supply

Distributive justice

These two criteria will be investigated in an empirical case study for

. . .

the onshore wind power expansion in Germany.

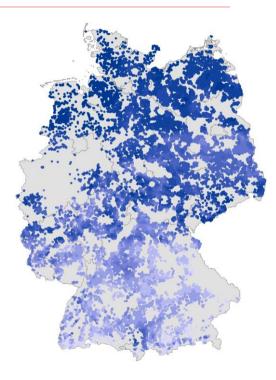
Model

Approach: optimizing the spatial allocation of wind turbines (WT) in a greenfiel approach

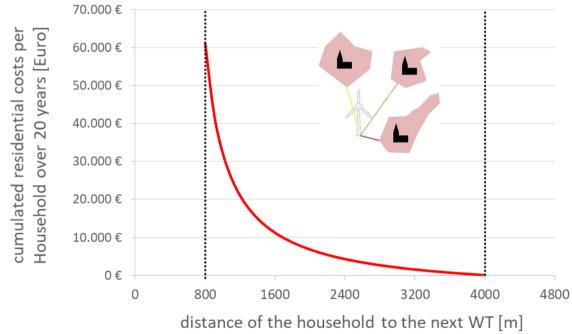
Input data: technically and legally feasable potential sites for WT

→ 106.497 WT with a combined 778 TWh/a for a WT type E-101 (3 MW) at 135m hub height.

Literature:


Masurowski F. Eine deutschlandweite Potenzialanalyse für die Onshore-Windenergie mittels GIS einschließlich der Bewertung von Siedlungsdistanzenänderungen [Dissertation]. Osnabrück; 2016,

Model II


monetary cost for each WT derived from

- 1. electricity generation cost:
 - CAPEX/OPEX assumptions (Deutsche Wind Guard),
 - wind climate data (DWD),
 - WT power curve

Model III

2. residential cost as a function of the distance of a WT to the surrounding households

Literature:

- Meyerhoff, J., et.al., Landscape externalities from onshore wind power, Energy Policy, Volume 38, Issue 1, 2010

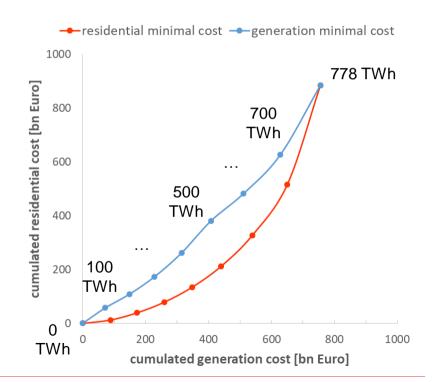
- Drechsler M., et. al., Combining spatial modeling and choice experiments for the optimal spatial allocation of wind-turbines, Energy Policy, Volume 39, Issue 6, 2011

- Wen, C., et. al., Valuing the visual impact of wind farms: A calculus method for synthesizing choice experiments studies. Sci. Total Environ. 637–638, 58–68 (2018)

Model IV

Model formulated and solved using General Algebraic Modelling System (GAMS)

Optimization - selection of WT out of the pool of WT on the potential sites – is targeting either

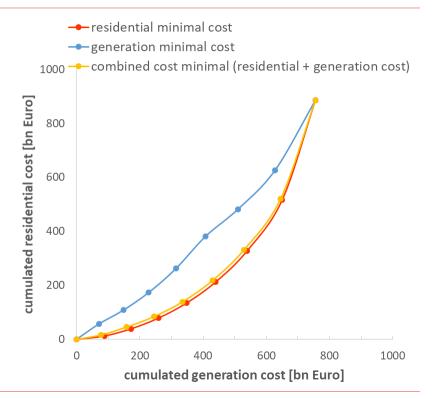

- minimal electricity generation cost
- minimal residential cost
- minimal combined cost of electricity generation and residential cost

with set constraints for the expanding electricity production of onshore wind (TWh/a)

Results (preliminary) I

Graphical representation of the trade-off

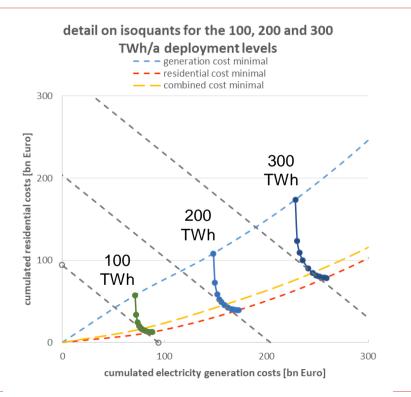
cumulated generation cost vs.
 cumulated residential cost



Results (preliminary) II

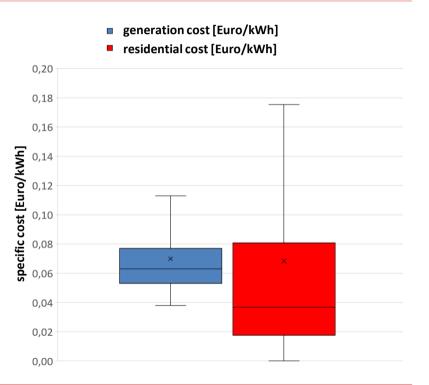
Graphical representation of the trade-off

cumulated generation cost vs.
 cumulated residential cost


combined costs

Results (preliminary) III

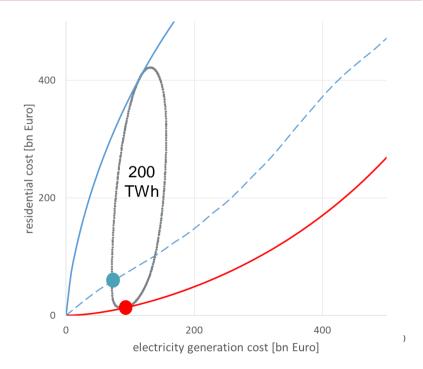
Graphical representation of the trade-off


- cumulated generation cost vs.
 cumulated residential cost
- combined costs
- isoquants for set generation targets

Results (preliminary) IV

Graphical representation of the trade-off

- cumulated generation cost vs.
 cumulated residential cost
- combined costs
- isoquants for set generation targets
- descriptive statistics as an explanation

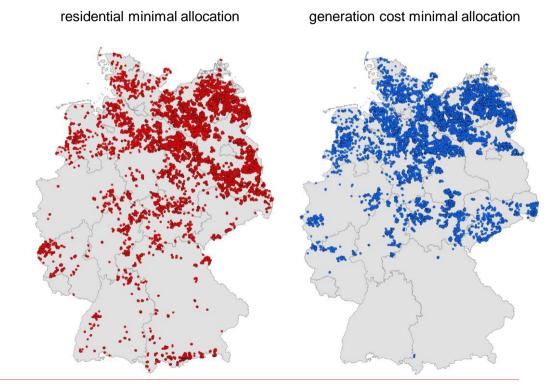


Results (preliminary) V

Pareto-frontiers for the 200 TWh case:

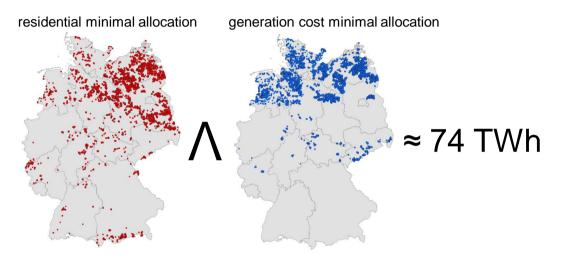
Determining the solution space: the enclosed pareto frontier marks the boundaries of the overall solution space for the allocation problem.

→ Potential trade-off can be much higher than expected when considering the overall potential solution space instead of the cost minimal solutions only.



Results (preliminary) VI

Spatial allocation mapping


UNIVERSITÄT LEIPZIG

Generation target 100 TWh/a 200 TWh/a 300 TWh/a 400 TWh/a

Results (preliminary) VII

Spatial representation of the trade-off:

Potential sites selected for both optimization criteria for the 200 TWh generation target (overlap), that can be regarded as "no regret" potential sites, amount to only 74 TWh.
→ only a minority of the potential sites of either optimization are simultaniously selected

Summary

UNIVERSITÄT LEIPZIG

- Residential cost are comparable in scale to generation cost according to the modelling
- Trade-Off first increases (until 500 TWh) before it decreases due to diminishing degree of freedom when approaching the maximum generation potential of 778 TWh
- Minmizing the overall cost (residential + generation cost) requires the inclusion of residential costs due to the observed trade-off
- Overall potential trade-off can be very significant as shown using the pareto frontiers

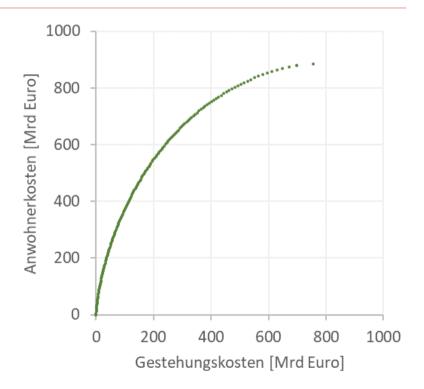
Outlook: checking obtained results by sensitivity analysis, modelling additional (nonmonetary) criteria like landscape aesthetics and nature protection

THANK YOU FOR YOUR ATTENTION

Philip Tafarte

Universität Leipzig

Ritterstraße 12 T +49 341 97-33604


tafarte@wifa.uni-leipzig.de

https://home.uni-leipzig.de/multiplee

Erste Ergebnisse I

Zielkonflikte in der grafischen Darstellung

Paretofront

Nachwuchsforschungsgruppe MultipIEE

Nachwuchsforschungsgruppe "Nachhaltiger Ausbau erneuerbarer Energien mit multiplen Umweltwirkungen – Politikstrategien zur Bewältigung ökologischer Zielkonflikte bei der Energiewende (MultipIEE)"

Gefördert im Rahmen der Sozial-ökologischen Forschung des BMBF, 2017-2022

Bundesministerium

für Bildung und Forschung

Trade-offs Associated with the Spatial Allocation of Future Onshore Wind Generation Capacity - a Case Study for Germany

RMRF

Summary

UNIVERSITÄT LEIPZIG

- Anwohnerkosten in relevanter Größe im Vergleich zu Gestehungskosten
- Anwohnerkosten variieren stärker als Gestehungskosten
 - → Gesamtkosten aus Gestehungskosten und Anwohnerkosten lassen sich am besten durch eine Berücksichtigung der Anwohnerkosten reduzieren.
- Trade-Offs nehmen zunächst zu, reduzieren sich dann aufgrund der fehlenden Freiheitsgrade bei der Auswahl an WEA wieder bei Ausschöpfung des gesamten Energiepotenzials.
- Ausblick: Ergebnisse durch Sensitivitätsanalysen absichern, zusätzliche (nichtmonetäre) Nachhaltigkeitskriterien wie Landschaftsbild, ökolog. Kriterien, ... integrieren.

Trade-offs Associated with the Spatial Allocation of Future Onshore Wind Generation Capacity – a Case Study for Germany