

Good Chargers? The impact of electric vehicle density on local grid costs Paal B. Wangsness (TØI/NMBU) Askill H. Halse (TØI)

MOTIVATION AND BACKGROUND

Almost half of all new cars in Norway were plug-in electric in 2018

This gives Norway the highest market share of EVs in the world, and the highest absolute number of EVs in Europe

The main reason: Conventional cars are heavily taxed

EVs needed to reach climate goals, but can lead to higher grid costs and tariffs

There exists a literature that warns that EV charging will cause substantial future costs to the local grid Examples:

De Hoog et al (2015). Optimal charging of electric vehicles taking distribution network constraints into account. *IEEE Transactions on Power Systems*

Haidar et al (2014). Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review. *Energy Conversion and Management*

Hattam et al (2017). Green neighbourhoods in low voltage networks: measuring impact of electric vehicles and photovoltaics on load profiles. *Journal of Modern Power Systems and Clean Energy*

Our motivation and contribution

- If indeed uncoordinated charging leads to higher costs to DSOs, then Norwegian data would be the first place to investigate.
- To our knowledge, such an empirical analysis has not been done before on real data on the world's highest level of EV density to date.
- Implications for regulation, pricing and assessing GHG abatement costs

Based on this motivation, our research questions are:

- 1. What are the *marginal costs* inflicted on DSOs when the number of EVs increases?
- 2. Through which *mechanisms*, i.e. which of the DSOs cost components, do we find the cost associated with a larger EV stock?

Panel dataset of 107 DSOs for the years 2008-2017 – 1070 observations

We match and merge together 3 datasets:

- 1) NVE's data for DSO costs and outputs applied for regulation
- 2) NVE's data for the DSOs legal operational area
- 3) Statistics Norway's data over registered cars at municipal level

The variables, and the direction of impacts from outputs and external cost-driving factors to costs

Descriptive statistics: DSO costs

We transform the variables to log-form: Skewness: 0.83 Kurtosis: 3.67

METHOD

A fixed effects regression model on a balanced panel

- Avoid issues of unmeasured time-invariant variables that we expect have an effect on both our explanatory variable of interest and the endogenous variable
 - E.g. temperature, sprawl etc.
- FE reduces the risk of omitted variable bias, making it more likely that the relationship we infer between EV density and DSO costs to be causal

A priori reasons to believe that EV density can be considered an

exogenous regressor

- Even if higher EV density led to higher costs for DSOs and higher grid rent, dramatic price hikes would be needed to make noticeable changes in EV demand.
- Electricity costs make about 15% of the distance-based cost for EVs, and grid rent makes up less than half of the bill before taxes.
- Not certain that the DSO can pass on all of their cost increase to their customers due to regulation.
- In other words, we expect EVs to affect grid costs, and have very little feedback the other way around.

We are left with a few time-variant variables

Model specification

$$\begin{split} &\log_tot_{it} = \alpha_i + \beta_1 \log_subscribe_{it} + \beta_2 \log_voltline_{it} \\ &+ \beta_3 \log_EV_{it} + \beta_4 \log_substations_{it} + \beta_5 event_{It} + \\ &\beta_6 Year_Dummy_t + \varepsilon_{it} \end{split}$$

- Log_tot: Log of total costs
- Log_subscribe: Log of number of subscribers
- Log_voltline: Log of km of high voltage line
- Log_EV: Log of EV stock
- Event: Number of extreme weather events
- Log_substations: Log of number of substations

RESULTS

The effect of EV density on costs seems to be economically significant, but imprecisely estimated

	(1)	(2)	(3)	(4)	(5)
	log_tot	log_tot	log_tot	log_tot	log_tot (removed
					outliers)
log_subscribe	0.338*	0.222	0.289	0.276	0.250
	(0.192)	(0.247)	(0.243)	(0.245)	(0.254)
log_voltline	0.318**	0.305**	0.293**	0.287*	0.271*
	(0.147)	(0.147)	(0.147)	(0.148)	(0.149)
event	0.007***	0.008***	0.004^{*}	0.004^{*}	0.004
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
log_ev	0.011***	0.007	0.011	0.010	0.007
<u> </u>	(0.004)	(0.006)	(0.007)	(0.007)	(0.007)
vear		0.004			
5		(0.005)			
log substation				0.025**	
108_5405441011				(0.012)	
cons	5.835***	-1.399	6.420***	6.417***	6.873***
	(1.595)	(8.079)	(2.191)	(2.197)	(2.256)
Year dummies	No	No	Yes	Yes	Yes
N	1070	1070	1070	1070	1030
r2_w	0.212	0.214	0.279	0.279	0.289
r2_b	0.982	0.980	0.982	0.982	0.979
r2_o	0.977	0.975	0.977	0.977	0.973
rho	0.948	0.975	0.968	0.968	0.973

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

The effect of EV density on costs seems to be economically significant, but imprecisely estimated

	(1)	(2)	(3)	(4)	(5)
	log_tot	log_tot	log_tot	log_tot	log_tot (removed
					outliers)
log_subscribe	0.338*	0.222	0.289	0.276	0.250
	(0.192)	(0.247)	(0.243)	(0.245)	(0.254)
log voltline	0.318**	0.305**	0.293**	0.287^{*}	0.271*
0-	(0.147)	(0.147)	(0.147)	(0.148)	(0.149)
event	0.007***	0.008***	0.004^{*}	0.004^{*}	0.004
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
log ev	0.011***	0.007	0.011	0.010	0.007
-	(0.004)	(0.006)	(0.007)	(0.007)	(0.007)
vear		0.004			
year		(0.005)			
log substation				0.025**	
log_substation				(0.012)	
_cons	5.835***	-1.399	6.420***	6.417***	6.873***
	(1.595)	(8.079)	(2.191)	(2.197)	(2.256)
Year dummies	No	No	Yes	Yes	Yes
Ν	1070	1070	1070	1070	1030
r2_w	0.212	0.214	0.279	0.279	0.289
r2_b	0.982	0.980	0.982	0.982	0.979
r2_o	0.977	0.975	0.977	0.977	0.973
rho	0.948	0.975	0.968	0.968	0.973

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

The economic significance

- The median number of customers were 7282, they had in total 78 EVs and total costs were 44 mill NOK for 2017
- Let's say the number of EVs doubles, *cetris paribus*
- Model predicts a cost increase of 462 000 NOK (46 200 €) or about 5920 NOK per EV

Heterogeneity test with sample splits along 3 dimensions

	(1)	(2)	(3)	(4)	(5)	(6)
	log_tot	log_tot	log_tot	log_tot	log_tot	log_tot
	Lower half	Upper half	Lower half EV	Upper half EV	Lower half cost	Upper half costs
	customers	customers	density	density	per customer	per customer
log_subscribe	0.336	0.491	0.124	0.638**	0.280	0.490
	(0.315)	(0.361)	(0.304)	(0.263)	(0.270)	(0.377)
	444					**
log_voltline	0.459***	-0.317	0.490***	-0.009	0.075	0.375**
	(0.139)	(0.351)	(0.160)	(0.240)	(0.288)	(0.142)
event	0.010***	0.001	0.001	0.006*	0.003	0.006
event	(0.002)	0.001	0.001	0.000	(0.003)	0.000
	(0.003)	(0.003)	(0.004)	(0.003)	(0.003)	(0.004)
log_ev	0.035***	0.003	0.025**	0.002	0.011	0.027**
	(0.010)	(0.009)	(0.011)	(0.010)	(0.009)	(0.011)
0000	4 929*	9 021**	1 755*	7 940**	9 060***	4 125
_cons	4.828	0.951	4.733	(2, 100)	(2,712)	4.155
Voor	(2.434) Vac	(3.8/1) Vac	(2.757) Vac	(5.109) Voc	(2.715) Voc	(3.008) Vac
dummies	168	168	168	168	168	Tes
N	535	535	540	530	540	530
$r^2 w$	0.157	0.094	0.289	0.311	0.251	0 343
$r^2 h$	0.977	0.978	0.933	0.973	0.993	0.972
r2_0	0.974	0.975	0.921	0.966	0.993	0.964
rho	0.957	0.909	0.831	0.986	0.990	0.753

Standard errors clustered at DSO level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

EVs affect cost components positively but statistically insignificantly, with the exception of grid-losses

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	log_opex	log_cap	log_cens	log_depres	log_gridloss	log_regulat_assets	log_copaid_assets
log_subscribe	0.338	0.120	0.080	0.146	1.244***	0.120	-1.034
	(0.386)	(0.380)	(1.210)	(0.372)	(0.454)	(0.380)	(1.125)
log_voltline	0.181	0.446^{**}	1.146	0.259	0.594^{***}	0.446^{**}	1.348*
	(0.202)	(0.217)	(0.751)	(0.272)	(0.211)	(0.217)	(0.764)
event	0.006	0.005^{*}	0.007	-0.002	0.000	0.005^{*}	-0.006
	(0.004)	(0.003)	(0.012)	(0.005)	(0.006)	(0.003)	(0.009)
log_ev	0.002	0.014	0.018	0.010	-0.034**	0.014	0.019
	(0.010)	(0.011)	(0.030)	(0.013)	(0.015)	(0.011)	(0.035)
_cons	6.104^{*}	5.177	-0.698	6.018	-6.576*	7.775**	10.752
	(3.311)	(3.399)	(10.190)	(3.976)	(3.878)	(3.399)	(9.774)
N	1070	1070	1070	1070	1070	1070	1068
r2_w	0.134	0.833	0.125	0.507	0.195	0.687	0.543
r2_b	0.962	0.935	0.917	0.965	0.957	0.935	0.049
r2_o	0.951	0.916	0.809	0.942	0.940	0.923	0.076
rho	0.938	0.974	0.350	0.976	0.968	0.974	0.964

DISCUSSION

A few things that have surprised us

- Economically significant, but not statistically significant
- The effect per EV seems to be diminishing as the EV density increases in a DSO's operational area
- A negative, but statistically significant impact on gridlosses

The wide confidence interval and other caveats

- β_3 has a 95% CI of [-0.0028 , 0.0238]
- Would want more precision before including it into calculations for DSO regulation?
- We estimate the relationsship between costs and registered EVs
 - We do not have data on charging behavior
 - Costs may accrue eslwhere, e.g., in areas with many cabins

CONCLUSION

We would not recommend EV density as a variable in the DSO regulation quite yet

- Statistically insignificant, but point estimates fairly large
- The effect per EV seems to be diminishing as the EV density increases
- Cautios optimist's interpretation: A shift from conventional cars to electric cars have social costs. However, as of now the costs are *not* in any statistically significant degree coming in the form of added cost to the local grid.

Thank you for your attention!

For any questions or comments not covered in the following Q&A, you may reach me at pbw@toi.no

I will also be happy to send you a complete working paper when it is finished in the next few months. Just let me know!

