

Capacity vs Energy Subsidies for Renewables: Benefits and costs for the 2030 EU Power Market?

> Özge Özdemir,¹ Ben Hobbs,² Marit van Hout,¹ Paul Koutstaal¹ ¹Netherlands Environmental Assessment Agency ²Johns Hopkins University

16th IAEE European Conference, Ljubljana 25-28 August 2019

Outline

- Motivation
 - Introduction
 - Research question
- Methodology
 - COMPETES Model structure
 - Assumptions
- Results
- Conclusions

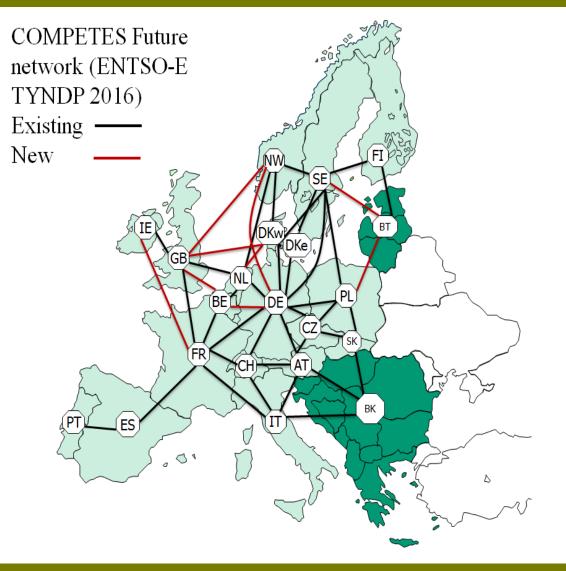
Introduction

- The European Union set a binding renewable target for 2030
 - at least 27% share of renewable energy in total energy consumption (January, 2014)
 - revised to 32% (New renewable energy directive, December, 2018)
 - the electricity sector will continue to contribute a significant share
- Unlike 2020 targets, 2030 targets explicitly ruled out binding national RES targets.
 - Individual countries are putting in place national policies to achieve their own RES targets
 - How will Member States meet the overall target?
- Renewable support schemes: Capacity (MW) vs. energy (MWh) mechanisms
 - The goals of cost-effectiveness and promoting technology improvement
 - Is learning best achieved by producing energy (MWh) or by installing capacity (MW)?
 - > If the latter then renewable portfolio standards (MWh) may be inefficient way to achieve goals

Research question:

How do policies that subsidize renewable *energy* vs *capacity* impact the type and location of renewable investments, renewable share, electricity costs and the amount of subsidies in the EU power market?

- Energy subsidy: Renewable portfolio standards (RPS)
- Capacity subsidy: Capacity auction
- A mixed investment/output subsidy (Newbery et al., 2018)
 - MW auction
 - Payments made per MWh up to a maximum MWh/MW
- National vs EU-wide targets



METHODOLOGY

COMPETES Model

- COMPETES is a network constrained model of the European electricity market
 - 22 node pan-European network
- Transmission mimics integrated EU network limited by Net Transfer Capabilities
- Wide-range of RES and conventional generation technologies
- Hourly resolution per node
 - Hourly profiles of demand
 - Hourly profiles for wind, solar, and hydro

8/26/2019

Model Structure (Ozdemir et al. 2019)

- Optimization Problem
 - Minimize

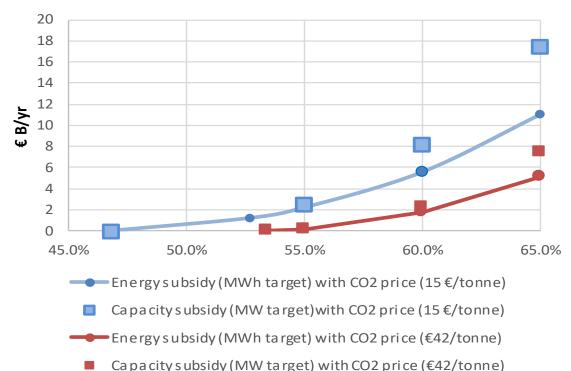
Generation Investment Costs + Fixed and variable O&M Costs+ Fuel Costs+ CO2 Costs +Load shedding costs Subject to:

- Generation capacity constraints (by technology/unit)
- Feasible investments (e.g., potentials for RES)
- Variable wind/solar generation
- Operation of storage (e.g., hydro pump storage, hydro availability within season)
- Cross-border transmission flow limits
- Electricity balance by country
- Renewable MWh or MW target (EU-wide or by country)
- Solution (Perfect competition equilibrium)
 - (Dis)investments, electricity dispatch, flows, electricity prices, renewable subsidies

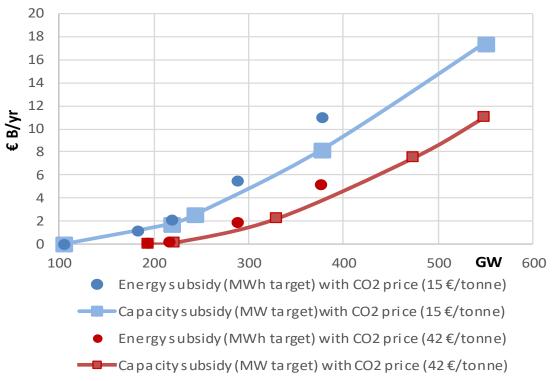
Assumptions for EU 2030

- Renewables:
 - Renewable policies EU+UK until 2020
 - Cost and potentials (PRIMES-2013, Green-x, Resolve-E)
- Conventional Generators
 - Fuel prices WEO 2016
 - ENTSO-E Mid-Term Adequacy scenario up to 2020
 - Policy-driven retirements
- Load
 - perfectly inelastic
 - ENTSO-E Vision 1, 2016
- Transmission
 - ENTSO-E TYNDP2016
- Load and VRE variability
 - 50 representative days of a year (1200 hours)

16th IAEE E


 Sampled from 8 years of data from Gorm et al., 2015

RES support policy scenarios		CO2 price €/tonn e	Target variations
EU-wide policy and targets	Baseline (No subsidy)	• 15 vs. 42	• No target
	Energy subsidy (RPS)	• 15 vs. 42	 Energy target up to 65% Technology neutral vs. tech specific
	Capacity subsidy (Capacity auction)	• 15 vs. 42	 Capacity target up to 550 GW Technology neutral vs. tech specific
	The mixed investment/output subsidy	• 15 vs. 42	• <i>MWh/MW target</i> <i>achieving up to</i> 65%
National targets	Country specific targets	• 15	 Based on renewable capacities in 2030 reported by ENTSO-E's Sustainable Transition (ST) scenario (ENTSO-E, 2018).



RESULTS

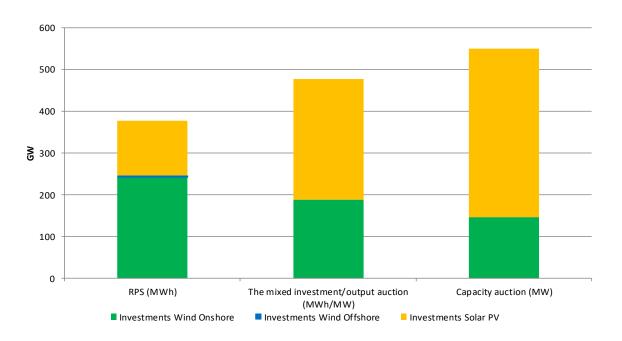
Incremental Costs of meeting MWh vs. MW targets

Cost of Meeting RPS (MWh) Target

8/26/2019

Cost of Meeting Capacity (MW) Target

- Energy-based subsidy: the cost-effective way to reach a certain Mwh target
- Capacity-based subsidy: the cost-effective way of reaching a certain capacity level
- The mixed investment/output subsidy: falls between these two cases as it has characteristics of both capacity and energy policies
- Higher carbon price

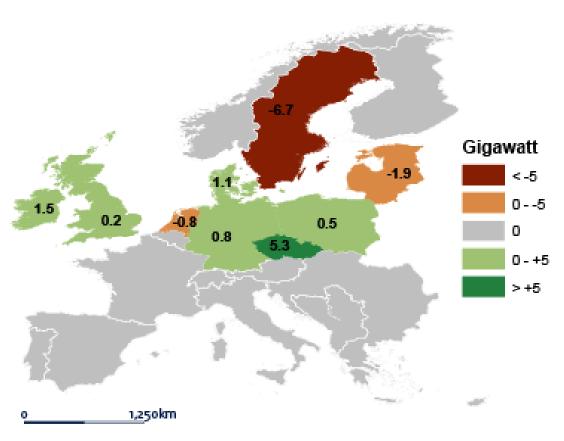

diminished.

- motivates a greater penetration of renewables without the need for subsidies
- the inefficiency resulting from choosing one type of policy to meet a different type of goal is
- 10

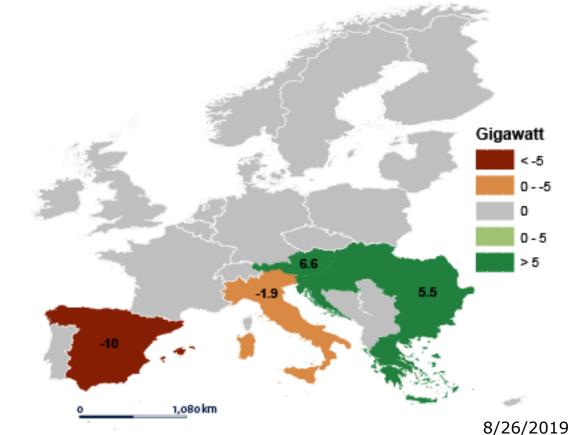
Capacity installed under MWh vs MW targets

- An energy-based subsidy boosts technologies with higher capacity factors (e.g., wind)
- A capacity-based subsidy boosts technologies with lower investment costs (e.g., solar PV)
- *The mixed investment/output subsidy* falls in between
- Trade-off:
 - A capacity-based subsidy is a more expensive way to achieve an implicit energy goal
 - But in exchange for that added expense, much more capacity might be built and more learning achieved
 - *Ex for 65% renewable share:* 46% more total renewable investments with capacity subsidy compared to an RPS while increasing the cost of the incremental renewables by 50%.

Incremental investments compared to base case: wind and solar under energy and capacity-focused subsidies achieving 65% renewable share: Technology neutral case


8/26/2019

11

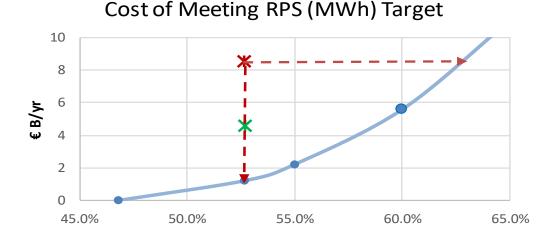

Locational Impact under MWh vs MW targets

• Consider MW of On-S, Off-S Wind and Solar based on 65% RPS. Then instead use capacity auction to get those same MW

Difference in wind capacity between scenarios (GWe)

Difference in PV capacity between scenarios (GWe)

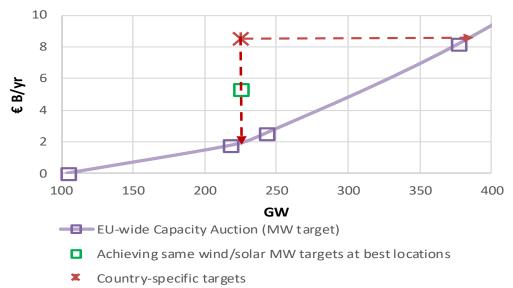
Where Does the Subsidy Go?


Wind Onshore

Solar PV

- Wind receives higher subsidy under energy-based policy than capacity-based policy while the reverse is the case for solar PV
- Under both cases, the subsidy rises as renewable targets increase, and is mostly devoted to compensating for the decreasing market value of the renewables

No REC trade: Country vs EU-wide targets


- Country targets: ENTSO-E's 2030 "Sustainable Transition"
 - 52.7% renewable share
 - 225 GW of new renewable capacity investments
- The incremental cost of country specific targets is 8.5B€/yr
 - *seven* times higher than the cost of achieving the same renewable share by EU-wide RPS
 - four times higher than the cost of achieving the same total renewable capacity by EU-wide capacity auction
- Half of the inefficiency is due to the wrong mix of technologies, and half is due to the wrong locations

EU-wide RPS (MWh target) with efficient technology mix and locations

- Achieving same wind/solar MWh targets at best locations
- **X** Country-specific targets

Cost of Meeting Capacity (MW) Target

Conclusions

- Trade-off between capacity vs energy subsidy mechanisms
 - To reach a certain share of renewable energy, it is more cost-effective to use an energy subsidy
 - To promote technology improvement through capacity installation, capacity subsidy mechanisms are more cost-effective
- Sensitivity of the results
 - The differences between capacity and energy subsidies increase with more ambitious targets
 - The differences decrease if targets are technology specific (i.e., wind onshore, offshore, solar)
 - The differences decrease with higher CO2 price
- The subsidy rises with more ambitious targets and is mostly devoted to compensating for the decreasing market value of the renewables
- The country-specific targets without renewable energy credit trading greatly increase the cost of renewable policies
 - Both the choice of technologies and locations are equally to blame for the cost increase resulting from country targets
 - The efficiency gains by setting an EU-wide target and REC trade is likely to be much higher than the choice between capacity vs. energy subsidies

References

- Newbery, D., Pollitt, M.G., Ritz, R.A., Strielkowski, W., 2018. Market design for a high-renewables European electricity system. Renewable and Sustainable Energy Reviews, 91, 695-707
- Özdemir, Ö., Hobbs B.F., van Hout, M., Koutstaal, P., 2019. Capacity vs energy subsidies for renewables: Benefits and costs for the 2030 EU power market. Cambridge Working paper in Economics 1927, Energy Policy Group, University of Cambridge, UK. https://www.eprg.group.cam.ac.uk/wpcontent/uploads/2019/03/1911-Text.pdf

Thank you for your attention! Any questions?

Tel: +31(6) - 11863235 Email: ozge.ozdemir@pbl.nl | I <u>www.pbl.nl/en</u>

Model Structure (Ozdemir et al., IEEE TPWRS, 2016; Hobbs et al., IEEE TPWRS, 2004)

Equilibrium problem:

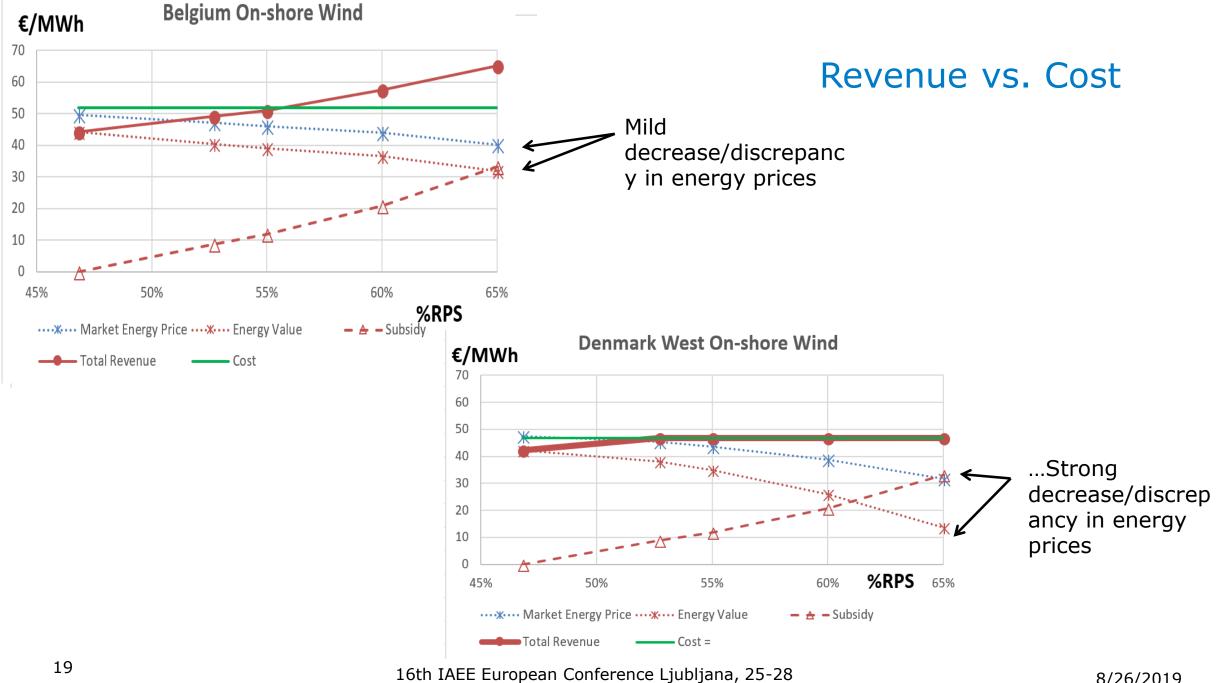
Generators:

- Maximize (Energy + Net Renewable Credit) (Investment + Fuel + CO2 Costs)
- > Subject to: Capacity constraints; variable wind/solar; storage operations, hydro availability within season; feasible investments

- Transmission:

- Maximize Arbitrage revenues
- *S.t.:* Transmission flow limits

- Consumers:


> *Maximize* Consumer surplus (if demand elastic)

Market clearing:

- Energy balance by country
- > Renewable MWh or MW credits

Solution

- Solve equilibrium problem (MCP) via PATH (Dirkse, Ferris, 1995)
- Or solve equivalent optimization problem (Samuelson, AER 1952):
 - > Maximize (Value of Consumption Cost of generation)
 - > S.t. Generator, transmission constraints; market clearing
 - > KKTs equivalent to equilibrium problem

August 2019

8/26/2019