

China University of Geosciences (Wuhan)

An LSTM-STRIPAT model analysis of China's 2030 CO2 emissions peak

Zhili Zuo, Haixiang Guo, Jinhua Cheng China University of Geosciences (Wuhan) zhilizuo.eva@gmail.com

CO2 emissions background

> When will China reach its peak CO2 emissions?

> What are the factors that affect CO2 emissions, taking into account the

heterogeneity of each province?

> How to achieve the commitment of peaking before 2030?

LSTM-STRIPAT model

China University of Geosciences

$$i_{t} = \sigma(W_{i}x_{t} + R_{i}h_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{f}x_{t} + R_{f}h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o}x_{t} + R_{o}h_{t-1} + b_{o})$$

$$g_{t} = tanh(W_{g}x_{t} + R_{g}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} * C_{t-1} + g_{t} * i_{t}$$

$$h_{t} = o_{t} * tanh(c_{t})$$

STRIPAT model

 $I = \alpha P^a A^b T^c e$

 $\ln I = \ln \alpha + a \ln P + b \ln A + c \ln T + \ln e$

where I, P, A and T are same as in the IPAT framework, a, b, c represent the elasticity of I, P, A and T, and e is the residual error.

 $\ln CE_{i,t} = \alpha + a \ln UR_{i,t} + b \ln GDP_{i,t} + c \ln SEC_{i,t} + d \ln EC_{i,t} + e \ln EI_{i,t} + f \ln PD_{i,t} + e$ $\ln C_{i,t} = \beta_1 \ln CE_{i,t-1} + \beta_2 \ln UR_{i,t} + \beta_3 \ln GDP_{i,t} + \beta_4 \ln SEC_{i,t} + \beta_5 \ln EC_{i,t} + \beta_6 \ln EI_{i,t} + \beta_7 \ln PD_{i,t} + u_i$

Variables Selection

Research	I .	
Behera et al. (2017)	Fossil energy	n direct investment
You et al. (2015)	Energy efficiency	and industrialization level, economic globalization
Haseeb et al. (2017)	Energy consumption structure	umption
Fan et al. (2006)	Income growth	rbanization, population aged 15-64
Lin et al. (2009)	Urban population	intensity
Shahbaz et al. (2016)	Population aged 15-64	openness, GDP per capita
Shahbaz et al. (2017)	Trade openess	ry, services sectors value-added, transportation
Li et al. (2015)	CO2 intensity	tensity, FDI
Wang et al. (2017)	Emission intensity	lation, urbanization level, technology level,
Yang et al. (2017)	Structural demand	urbanization, population, energy intensity
Zhang et al. (2017 a.b)	Transportation	nology, energy structure, urban affordable revenue per capita, energy
	Consumption patterns and scales	intereste.
Shual et al. (2017)	FDI	intensity
Cansino et al. (2016)	Technology	ogy, structural demand, consumption patterns and scale
Su et al. (2017)	Energy structure	demand structure effect, total final demand effect
Geng et al. (2013)	Industrial structure	intensity, production structure, consumption structure and per capita
	Energy intensity	
Guan et al. (2009)	Population	production structure, consumption pattern and per capita consumption
Zhang et al. (2009)	Energy consumption	y and CO2 intensity
Zhang et al. (2016)	Urbanization	nissions intensity, energy structure, energy consumption, technology,
Wang et al. (2011)	GDP per capita	ode
Chen et al. (2018)	(2 4 6 8 10 12 14 16 Ire, energy intensity, per capita GDP, and population size
Xiao et al. (2017)	China CGE	2010-2020 Energy efficiency, energy structure, industrial structure

>When will China reach its peak CO2 emissions?

Shanxi

Shaanxi

Jiangsu

Guangxi

2030

2030

Gansu

Inner Mongolia

8

>When will China reach its peak CO2 emissions?

PWP: Beijing, Jilin, Heilongjiang, Shanghai, Fujian, Hubei, Guangdong, Guangxi, Yunnan, Tianjin, Hebei, Shanxi, Zhejiang, Liaoning, Shaanxi, and Gansu (16)

PWTP: Inner Mongolia, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hunan, Hainan, Chongqing, Sichuan, Guizhou, Qinghai, Ningxia, and Xinjiang (14)

> The accuracy of prediction result

Province	MAPE			Drovinco	MAPE		
	LSTM	BPNN	GM(1,1)	TTOVINCE	LSTM	BPNN	GM(1,1)
Beijing	3.9%	4.8%	15.1 %	Hainan	4.6%	9.7%	19.9%
Tianjin	6.1%	16.4%	8.9%	Chongqing	2.1%	0.9%	6.5%
Hebei	5.2%	13.7%	11.9%	Sichuan	4.6%	22.3%	20.9%
Shanxi	2.2%	76.2%	9.3%	Guizhou	4.5%	19.5%	12.9%
Inner Mongolia	4.1%	32.3%	33.3%	Yunnan	5.5%	0.01%	23.9%
Liaoning	3.6%	75.0%	7.7%	Shaanxi	6.6%	58.6%	17.7%
Jilin	3.4%	72.9%	11.7%	Gansu	5.4%	0.07%	7.6%
Heilongjiang	2.6%	85.5%	10.5%	Qinghai	5.5%	4.2%	11.8%
Shanghai	3.6%	76.2%	8.8%	Ningxia	5.4%	0.36%	26.6%
Jiangsu	3.3%	32.3%	11.9%	Xinjiang	6.2%	72.2%	25.1%
Zhejiang	3.4%	85.6%	21.5%	Henan	3.2%	38.4%	21.4%
Anhui	3.8%	75.8%	7.1%	Hubei	4.4%	17.7%	11.3%
Fujian	4.7%	9.8%	24.0%	Hunan	5.5%	16.8%	20.2%
Jiangxi	5.0%	5.4%	11.7%	Guangdong	4.0%	90.2%	14.6%
Shandong	3.4%	21.1%	21.6%	Guangxi	6.0%	0.21%	14.7%

Estimated results for the PWP and PWTP

Explanatory	OLS Model		Fixed Effect Model		Random Effect Model		
Variables	PWTP	PWP	PWTP	PWP	PWTP	PWP	
Interept	8.342***	-0.814***			1.395***	0.862** (0.387)	
	(0.396)	(0.235)			(0.493)		
lnUR	0.037	0.0345*	-0.088***	-0.093***	-0.081***	0.021 (0.021)	
	(0.037)	(0.014)	(0.023)	(0.024)	(0.022)	-0.021 (0.021)	
lnGDP	48.371	-0.292***	-15.340	1.123***	-15.074	0 112*** (0 020)	
	(49.336)	(0.019)	(18.114)	(0.039)	(18.468)	-0.112 · · · (0.020)	
	-1.595***	0.372***	0.295***	0.1594**	0.268***	0.349***	
IIISEC	(0.137)	(0.057)	(0.080)	(0.049)	(0.078)	(0.053)	
InFC	-47.494	1 292*** (0 022)	16.249	ΝA	15.966	1 105*** (0 040)	
INEC	(49.338)	1.562 (0.052)	(18.112)	NA	(18.467)	1.103**** (0.049)	
InFI	48.210	NT A	15.421	1.190***	15.163	ΝA	
INEL	(49.336)		(18.115)	(0.053)	(18.469)	NA	
InDD	0.005	0 103*** (0 013)	0.045*	1.049***	0.003	0 100 * * * (0 024)	
	(0.023)	0.105*** (0.015)	(0.246)	(0.089)	(0.083)	0.190*** (0.054)	
Obs.	504	335	504	335	504	335	
R-Squared	0.782	0.940	0.931	0.95461	0.926	0.938	
Adj. R-Squared	0.780	0.939	0.927	0.95233	0.925	0.937	
E statistic	$297.725^{***}(df = 6;$	$1031.2^{***}(df = 5;$	1,075.068 *** (df = 6;	1337.55***(df = 5;	6 710 078***	4 060 021***	
F-statistic	497)	329)	480)	318)	0,219.978	4,909.931	
	F 1= 203.57,		F 2= 74.372,				
F test	df1 = 17, df2 = 480,		df1 = 11, df2 = 318,				
	p-value < 2.2e-16		p-value< 2.2e-16				
Hausman test			Chisq1 = 80.309,		Chisq2 = 22.306,	Chisq2 = 22.306,	
			df = 6,		df = 4,	df = 4,	
			p-value = 3.085e-15		p-value = 0.00017	p-value = 0.0001742	

Empirical results for the provinces without a CO2 emissions peak value (dynamic)

Explanatory Variables	OLS Model	Fixed Effect Model	Random Effect Model			
lag(InCE, 1)	0.995***	0.800***	0.986***			
	(0.009)	(0.021)	(0.011)			
lnUR	0.022***	-0.016	-0.028***			
	(0.007)	(0.012)	(0.008)			
lnGDP	-11.390	-15.262*	-12.729			
	(9.530)	(8.685)	(9.503)			
InSEC	0.056*	0.175***	0.057*			
	(0.031)	(0.039))	(0.033)			
lnEC	11.387	15.465*	12.733			
	(9.530)	(8.684)	(9.502)			
lnEI	11.364	15.205*	-12.694			
	(9.530)	(8.685)	(9.502)			
	-0.002	0.031	0.005			
InPD	(0.004)	(0.121)	(0.006)			
Constant	-0.159		-0.174			
Constant	(0.109)		(0.120)			
Obs.	486	486	486			
R-Squared	0.992	0.984	0.989			
Adj. R-Squared	0.992	0.983	0.989			
F-statistic	8,295.984***(df = 7; 478)	3,961.978***(df = 7; 461)	44,102.180***			
F test	F = 9.1255,					
	df1 = 17, df2 = 461,					
	p-value < 2.2e-16					
Hausman test		chisq = 144.57,				
	$\mathrm{df}=7,$					
	p-value < 2.2e-16					

> What are the factors that affect CO2 emissions?

CO2 emissions drivers rank

GDP had a greater inhibitory effect on CO2 emissions

in the PWTP, but a significantly positive impact on CO2

emissions in PWP

Lag effect

Urbanization had a negative effect on CO2 emissions

Population density, energy intensity, and industrial

structure, energy consumption had a positive effect

on CO2 emissions, but the PWTP energy intensity was

much greater than the PWP

The PWP CO2 emissions were found to be more

affected by current factors whereas the PWTP was

found to be affected by **both current and past** factors.

> How to achieve the commitment of peaking before 2030?

Economic development -- Abandon traditional **economic development mode**, get rid of the traditional idea of GDP growth at the expense of the environment.

Energy consumption -- Optimized **energy supply structure** by increasing the share of new energy and renewable energy according to local advantages and resource characteristics. Develop new energy planning projects such as nuclear, hydropower, wind, solar, and biomass power generation, increase the proportion of renewable energy consumption, promote the diversification of energy supply and consumption, and actively optimize and adjust the energy consumption structure in China. **Energy intensity** -- Establish **regional innovation system**, emphatically improve energy-intensive enterprise independent innovation ability, strictly implementing energy-saving projects, increase the theory related to energy efficiency technology research and development funding, to reduce emissions of China comprehensive preparation for establishing the mechanism of clean energy development.

Perfecting the laws and regulations

China University of Geosciences (Wuhan)

THANK YOU FOR ATTENTION!

ZHILI ZUO CHINA UNIVERSITY OF GEOSCIENCES (WUHAN) zhilizuo.eva@gmail.com