

Energy System Response to Future Uncertainties

Sannamari Pilpola, MSc. (Tech.), Aalto University, Finland 16th IAEE European Conference 2019, Ljubljana

Outline

- Energy in Finland
- Motivation and research questions
- Methodology: model and analysis
- Results
- Conclusions

Energy in Finland

- Cold climate, very energy-intensive industry
- Forest biomass and nuclear
- Share of renewables 41% in 2017
- Ambitious targets
 - Banning the use of coal by 2030
 - CO_2 emissions -55% by 2035
 - Carbon-neutrality by 2035
 - Power and heat generation carbon-neutral by 2040

Sannamari Pilpola 28.8.2019 3/15

Energy in Finland

Sannamari Pilpola 28.8.2019 4/15

Motivation

- Energy system optimization often based on deterministic values for input parameters
 - Risk for suboptimal decisions or performance

Sannamari Pilpola 28.8.2019 5/15

Research questions

- To which extent would uncertainties affect the performance of an energy system?
 - Consumption level, cost and renewable resource uncertainties
 - Existing energy system vs. future low-carbon energy systems
 - Simultaneous sensitivity analysis
 - Which uncertainties are the most significant?

Methodology

- National energy system simulation model
 - Electricity, heat and fuel
 - Hourly merit-order-based heat and power production
 - Also includes P2H, P2G, electric vehicles and storages
- Reference system: Finland in 2016
 - Calibrated with historical data
- Future 2050 low-carbon energy system scenarios
 - Cost optimization
 - Different levels of nuclear (0 6700 MW) and cross-border transfer capacities (3600 6800 MW)

Pilpola, S.; Arabzadeh, V.; Mikkola, J.; Lund, P.D. Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland. *Energies* **2019**, *12*, 949. Sannamari Pilpola 28.8.2019 7/15

Methodology: sensitivity analysis

- Monte Carlo uncertainty analysis, N = 10 000
 - Simulation model is repeatedly evaluated for different samples of the uncertainty
 - Existing energy system (Finland in 2016) and future low-carbon energy system scenarios
- Uncertainty ranges for costs, consumption and renewable resources in 2050
 - In total 45 parameters
 - Uniform distribution assumed
- Most influential parameters determined via correlation coefficients

Methodology: schematic of the study

Sannamari Pilpola 28.8.2019 9/15

Methodology: simulation model

Results: 2016 system + 2050 uncertainties

Results: 2016 system + 2050 uncertainties

Results: future energy systems

Results: final notes

- Consumption level the most significant factor
 - Correlation with e.g. CO₂ emissions 0.68-0.93
- Wind power capacity factor and CO₂ price next significant
- Biomass potential affected mainly CO₂ emissions
- Uncertainty analysis without consumption variation did not change the results

Sannamari Pilpola 28.8.2019 14/15

Conclusions

- Level of consumption highly relevant in future energy system optimization
- Existing Finnish system not able to fully cope with 2050 consumption
 - Electricity not supplied 1.1% of the time, annually 0.1% of consumption
- Fuel-based production more susceptible to variations
- Selecting the "best" pathway becomes harder when uncertainties are included

Thank you for your attention

Questions? Comments?

Sannamari Pilpola 28.8.2019

Justification of N = 10 000

Aalto University School of Science