Revisiting The Growth Hypothesis For the Renewables in the Energy-Growth Nexus ~Using ARDL Approach~

Researcher | Minyoung Yang Jinsoo Kim Date | 2019.08.28

Contents Introduction 01 **Research Question** 02 Methodology 03 **Results** 04 Conclusion 05

1. Introduction

- Progress in renewables
 - ✓ International climate change issues
 - ✓ Sustainable development goals
- Concentrated in power sector
 - ✓ Far less growth in heating, cooling and transport in 2018
 ✓ Share in power generation would rise from 25% to 86%

1. Introduction

- Different cost structure
 - ✓ High CAPEX (capital expenditure)
 - ✓ Different from traditional power generation

1. Introduction

• About...

The economic part of renewable energy → Energy-Growth Nexus

2. Research Question

- Literature review
 - ✓ Kraft and Kraft (1978)
 - ✓ Energy consumption and economic growth relationship have been investigated
 - ✓ It has been developed at a disaggregated level (Ozturk, 2010)
- Four hypotheses (Payne, 2010)
 - ✓ Growth

; Energy consumption plays an important role in economic growth

- ✓ Conservation
 - ; Energy conservation policies have little or no adverse effect
- ✓ Neutrality
 - ; Absence of relationship
- ✓ Feedback
 - ; Bi-directional relationship

2. Research Question

- Research questions
 - Confirmation of growth hypothesis
 - \rightarrow Empirical analysis
 - ✓ Feature of renewable energy industry affect growth nexus
 - → Based to Thomsen-Reuter (2017)
 - → Countries within the PV and wind power company

→ Canada, China, Denmark, Germany, India, Spain, USA
 ✓ Policy implication

- 3. Methodology
 - ARDL bounds testing approach (Pesaran et al. 2001)
 - ✓ Auto-regressive Distributed Lag model
 → Frequently used in recent research (cf.)

Study	Periods	Country	Conclusion
Sari et al. (2008)	2001-2005	USA	$GDP \Rightarrow REC$
Ziramba (2009)	1980-2005	South Africa	$EC \Leftrightarrow GDP$
Chandran et al. (2010)	1971-2003	Malaysia	ECC => GDP
Ozturk and Acaravci (2010)	1968-2005	Turkey	$\mathbf{EC} \neq \mathbf{GDP}$
Alam et al. (2012)	1972-2006	Bangladesh	$EC \Leftrightarrow GDP$
Shahbaz and Feridun (2012)	1971-2008	Pakistan	GDP => ECC
Akinlo (2008)	1980-2003	11 Sub Sahara African countries	$GDP \Rightarrow EC; EC \Leftrightarrow GDP; EC \neq GDP$

✓ Advantages

- → Irrespective of whether underly variables are I(0) or I(1) or a combination of both (Pesaran and Pesaran, 1997)
- → More significant in small samples (Pesaran and Shin, 1999)
- → ARDL allows the variables may have different optimal lags
- → Effectively corrects for endogeneity of explanatory variables

3. Methodology

• Data

- ✓ Time series data
 - → From 1980 to 2016 (37 observations)
 - → 7 countries (Thomsen-Reuter, 2017)
 - → Convert to natural log form

✓ Variables

Name	Explanation	Unit	Source
GDP	Real GDP per capita	[constant 2010 US\$]	WDI
NRE_EC	Non-renewable electricity consumption per capita	[watt-hours]	EIA, WDI
*RE_EC	*Renewable electricity consumption per capita	[watt-hours]	BP, WDI
K	Real gross fixed capital formation per capita	[constant 2010 US\$]	WDI

*Only PV and wind

3. Methodology

- Econometric procedure
 - ✓ Stationarity (unit root test)
 - → ADF(Augmented Dickey-Fuller, 1979)
 - → PP(Phillips and Perron, 1988)
 - → KPSS(Kwiatkowsk-Phillips-Schmidt- Shin, 1992)
 - ✓ Johansen and Juselius (1990)
 - → Confirm that there are multiple long-run relations
 - → Toda and Yamamoto (1995)
 - ✓ ARDL bounds testing approach
 - → Dependent variable; real GDP
 - → Narayan (2005); a set of critical values for small sample size (30-80)
 - \rightarrow ARDL model for cointegration testing

$$\Delta \ln GDP_t = \alpha_0 + \sum_{i=1}^n \alpha_1 \Delta \ln GDP_{t-i} + \sum_{i=1}^n \alpha_2 \Delta \ln NRE_EC_{t-i} + \sum_{i=1}^n \alpha_3 \Delta \ln RE_EC_{t-i} + \sum_{i=1}^n \alpha_4 \Delta \ln K_{t-i}$$

 $+\lambda_1 lnGDP_{t-1} + \lambda_2 lnNRE_EC_{t-1} + \lambda_3 lnRE_EC_{t-1} + \lambda_4 lnK_{t-1} + u_t$

4. Results

• Unit root test_ADF

Country	Variables	Level. Statistics	Diff. Statistics	Stationarity
	GDP	-0.758	-4.278***	I(1)
Canada	NRE_EC	-1.787	-3.659**	I(1)
Callada	RE_EC	-1.175	-6.734***	I(1)
	K	-0.700	-4.835***	I(1)
	GDP	-0.123	-3.287**	I(1)
China	NRE_EC	0.807	-2.971*	I(1)
Ciiiia	RE_EC	0.159	-4.744***	I(1)
	K	-0.758	-3.308**	I(1)
	GDP	-2.404	-4.281***	I(1)
Donmark	NRE_EC	1.415	-2.875*	I(1)
Demnark	RE_EC	-4.376***	-3.648**	I (0)
	K	-1.282	-4.912***	I(1)
	GDP	-1.064	-5.192***	I(1)
Cormony	NRE_EC	1.290	-4.087***	I(1)
Germany	RE_EC	-2.224	-4.171***	I(1)
	K	-0.630	-4.945***	I(1)
	GDP	3.594	-4.273***	I(1)
India	NRE_EC	-0.284	-4.601***	I(1)
mula	RE_EC	-0.785	-4.661***	I(1)
	K	0.979	-5.686***	I(1)
	GDP	-1.728	-2.431'	>I(1)
Spain	NRE_EC	-1.907	-3.061**	I(1)
Span	RE_EC	-1.246	-6.176***	I(1)
	K	-1.303	-3.038**	I(1)
	GDP	-1.796	-4.071***	I(1)
TICA	NRE_EC	-2.223	-4.678***	I(1)
USA	RE_EC	-2.089	-6.096**	I(1)
	K	-1.423	-3.460**	I(1)

4. Results

• Unit root test_PP

Country	Variables	Level. Statistics	Diff. Statistics	Stationarity
	GDP	-0.768	-4.219***	I(1)
Canada	NRE_EC	-1.884	-3.659**	I(1)
Canada	RE_EC	-1.246	-6.982***	I(1)
	K	-0.770	-4.879***	I(1)
	GDP	-0.139	-3.403**	I(1)
China	NRE_EC	0.435	-3.007**	I(1)
Ciiiia	RE_EC	-0.033	-4.802***	I(1)
	K	-0.681	-3.362**	I(1)
	GDP	-2.268	-4.352***	I(1)
Donmonk	NRE_EC	0.735	-2.777*	I(1)
Denmark	RE_EC	-4.210***	-3.809***	I(0)
	K	-1.317	-4.959***	I(1)
	GDP	-1.186	-5.192***	I (1)
Cormony	NRE_EC	0.470	-4.172***	I(1)
Germany	RE_EC	-1.871	-4.288***	I (1)
	K	-0.636	-4.903***	I(1)
	GDP	4.111	-4.287***	I(1)
India	NRE_EC	-0.298	-4.763***	I(1)
Inula	RE_EC	-0.789	-4.556***	I(1)
	K	0.912	-5.715***	I (1)
	GDP	-1.396	-2.590'	> I (1)
Spain	NRE_EC	-1.718	-3.019**	I(1)
Span	RE_EC	-1.257	-6.175***	I(1)
	K	-1.404	-3.127**	I(1)
	GDP	-1.699	-4.000***	I(1)
TIC A	NRE_EC	-2.124	-4.768***	I(1)
USA	RE_EC	-2.354	-6.141***	I(1)
	K	-1.402	-3.399**	I(1)

4. Results

• Unit root test_KPSS

10%: ', 5%: *, 2.5%: ** 1%: ***

Country	Variables	Level. Statistics	Diff. Statistics	Stationarity at
	GDP	0.0922	0.0717	Level and Diff.
Canada	NRE_EC	0.239***	0.0408	Diff.
Callada	RE_EC	0.196**	0.0246	Diff.
	K	0.114	0.0871	Level and Diff.
	GDP	0.0854	0.0605	Level and Diff.
China	NRE_EC	0.177**	0.118'	Diff.
Ciiiia	RE_EC	0.0554	0.0589	Level and Diff.
	K	0.0954	0.0659	Level and Diff.
	GDP	0.214**	0.0524	Diff.
Donmont	NRE_EC	0.248***	0.0424	Diff.
Denmark	RE_EC	0.244***	0.0685	Diff.
	K	0.162*	0.0456	Diff.
	GDP	0.208**	0.0359	Diff.
Commony	NRE_EC	0.159*	0.0761	Diff.
Germany	RE_EC	0.242***	0.0897	Diff.
	K	0.152*	0.0616	Diff.
	GDP	0.26***	0.043	Diff.
India	NRE_EC	0.133'	0.15*	Level
mula	RE_EC	0.17*	0.0941	Diff
	K	0.219***	0.0851	Diff
	GDP	0.201**	0.0881	Diff
Spain	NRE_EC	0.213**	0.125'	Diff
Spann	RE_EC	0.212**	0.0887	Diff
	K	0.177**	0.0737	Diff
	GDP	0.205**	0.0589	Diff
TICA	NRE_EC	0.254***	0.109	Diff
USA	RE_EC	0.195**	0.0739	Diff
	K	0.165*	0.06	Diff

4. Results

• Cointegration test

Johansen cointegration test			ARDI	L Bou	nds t	esting
Country	Statistic	Result	Statistic		Result	
Canada	57.6499*** 34.5067**	Rank 0 (1%) Rank 1 (5%)	¹ ⁄ ₀) 2.196		No levels relationship	
China	53.1831***	Rank 0 (1%, 5%)) 3.804		N rel	lo levels ationship
Denmark	45.9873***	Rank 0 (1%, 5%)	2.924		No levels relationship	
Germany	60.6732*** 22.9393**	Rank 0 (1%) Rank 1 (5%)	5.716**		Relationship exist	
India	58.4230*** 25.3194**	Rank 0 (1%) Rank 1 (5%)	5.044**		Relat	ionship exist
Spain	33.1724***	Rank 1 (1%, 5%)	1.298		No levels relationship	
USA	39.0330*** 17.6468**	Rank 1 (1%) Rank 2 (5%)	12.136*** Rela		Relat	ionship exist
	5% critical	1% critical		I	(0)	I(1)
Rank 0	54.64	61.21	1%	10/2 5 333		7.063
Rank 1	34.55	40.49	5% 3.710		710	5.018
Rank 2	18.17	23.46	10% 3.008		008	4.150

4. Results

• Cointegration test

Country	ARDL bounds test	Long-run	Approach
Canada	No cointegration (*conflict with Johansen at 5%)	Х	VAR
China	No cointegration	X	VAR
Denmark	No cointegration	X	VAR
Germany	Cointegrated at 5% significance level	0	VECM
India	Cointegrated at 5% significance level	Ο	VECM
Spain	No cointegration (*conflict with Johansen)	X	VAR
USA	Cointegrated at 1% significance level	0	VECM

4. Results

Causality test_VAR model

Country	H _o	Short-ru	n	Results	
Consta	$GDP \rightarrow RE_EC$	7.6514	X		
Callaua	H_0 Short-fullGDP \rightarrow RE_EC7.6514XRE_EC \rightarrow GDP10.346**0GDP \rightarrow RE_EC54.93***0RE_EC \rightarrow GDP23.09***0GDP \rightarrow RE_EC9.0028*0RE_EC \rightarrow GDP6.1744XGDP \rightarrow RE_EC132.73***0	0	KE_EU → GDP		
China	$GDP \rightarrow RE_EC$	54.93***	0	GDP ⇔ RE_EC	
China	$RE_EC \rightarrow GDP$	23.09***	0	(bi-directional)	
Donmork	$GDP \rightarrow RE_EC$	9.0028*	0		
Denmark	$RE_EC \rightarrow GDP$	6.1744	X	GDP 7 KE_EC	
	$GDP \rightarrow RE_EC$	132.73***	0	GDP ⇔ RE_EC	
Spain	$RE_EC \rightarrow GDP$	45.264***	0	(bi-directional)	

- 4. Results
 - Causality test_VECM model

Country	H _o	Shor	Short-run		un (<i>ECT</i> _{t-1})	
C	$GDP \rightarrow RE_EC$	0.8	X	4.99**	Ο	
Germany	$RE_EC \rightarrow GDP$	0.05	X	4.54**	0	
	$GDP \rightarrow RE_EC$	0.08	X	5.4**	0	
maia	$RE_EC \rightarrow GDP$	3.08*	0	0.02	X	
	$GDP \rightarrow RE_EC$	1.91	X	10.51***	0	
USA	$RE_EC \rightarrow GDP$	2.91	X	6.64***	0	

- ✓ Germany: bi-directional causality in long-run
- ✓ India: RE_EC granger cause GDP in short-run GDP granger cause RE_EC in long-run
- ✓ USA: bi-directional in causality in long-run

- 5. Conclusion
 - Growth hypothesis and renewable electricity consumption
 - ✓ Empirical results (ARDL, Granger)
 - → Only 3 of 7 countries have long-run relationship
 - → Renewable granger cause GDP Short-run: Canada, China, Spain, India Long-run: Germany, USA
 - → Growth hypothesis? Canada, India only short-run
 - ✓ Renewable, Economic growth and Policy
 - \rightarrow Economic growth can be opportunity
 - → Long-run perspective
 - \rightarrow GDP to electricity consumption

Upbringing strategy → sustainable development (short-run) (Long-run)

THANK YOU FOR LISTENING

ANY QUESTIONS?