Can we phase-out all of them?

How market interventions impact security of electricity supply in Germany

16th IAEE European Conference

August 27, 2019

Authors: Lars Nolting and Aaron Praktiknjo

Current situation in Germany: reduction of controllable capacities and shift of burden to fluctuating renewables

1) Phase-out of nuclear power plants until 2023 is fixed

Sources of data: BNetzA, 2018a; Commission for growth, structural change and employment, 2019; German government, 2011; BNetzA, 2018b; entso-e 2018

Current situation in Germany: reduction of controllable capacities and shift of burden to fluctuating renewables

- Phase-out of nuclear power plants until 2023 is fixed
- Mothballing of coal-fired power plants until 2038 is suggested

Sources of data: BNetzA, 2018a; Commission for growth, structural change and employment, 2019; German government, 2011; BNetzA, 2018b; entso-e 2018

Current situation in Germany: reduction of controllable capacities and shift of burden to fluctuating renewables

- 1) Phase-out of nuclear power plants until 2023 is fixed
- 2) Mothballing of coal-fired power plants until 2038 is suggested
- 3) Increasing capacities of renewables
- 4) Non-availabilities and weather effects need to be accounted for

Due to changes in the composition of power plant parks, scientific assessments of security of electricity supply gain further importance

- Burden shift towards renewables claims for stochastic assessments of weather influences and simulations in hourly resolution
- Thus, the **JERICHO module** to assess security of electricity supply is introduced and applied in the following
- Scientific key indicators such as Loss of Load Probability (LoLP) and Loss of Load Expectation (LoLE) are determined
- Definition of nine scenarios for the future security of electricity supply in Germany in the scenario years 2020, 2022, and 2023

Year	Additional phase-out of coal-fired power plants		
	0 GW	5 GW	8 GW
2020	2020	20205GW	20208GW
2022	2022	20225GW	20228GW
2023	2023	20235GW	20238GW

METHODOLOGY

Computationally intense calculation of all possible system states

- Recursive algorithm according to Brückl 2006
- Computation time of 8.5 h using computing cluster of RWTH Aachen University

JERICHO: Probabilistic simulation models in <u>hourly resolution</u> to assess security of supply

JERICHO: Probabilistic simulation models in <u>hourly resolution</u> to assess security of supply

METHODOLOGY

Consideration of neighboring countries using hourly capacity balances

Capacity surpluses / needs during German peak load hour [GW]

- Import potentials are accounted for
- Usage of bilateral Net Transfer Capacities (NTCs)

JERICHO: Import potential is considered on the residual load side

MODEL INPUT DATA (EXCERPT)

Installed capacities in neighboring countries

- Overall increase of installed capacities
- However reductions of controllable capacities

Sources of data: entso-e 2017; entso-e 2018a

MODEL INPUT DATA (EXCERPT)

Electricity demand in Germany

RESULTS

Hours with high Loss of Load Probabilities (LoLPs) occur in reduction scenarios

RESULTS

Quasi-absolute levels of security of supply are set at danger

- 2020: No substantial threat to security of supply
- 2022: Mean LoLE of 1 h for 8 GW reductions
- 2023:
 - Mean **LoLE** of ~1 h for 5 GW reductions
 - Mean LoLE of 2.6 h for 8 GW reductions
- Overall: Increasing dependency on weather effects

DISCUSSION: UNCERTAINTY OF INPUT DATA

Changes in installed capacities in neighboring countries for 2023

"In fact, the reason behind this difference is not an error but an update of data due to better information-availability compared to last year." (e-mail communication with representative from entso-e 2018b)

DISCUSSION: SENSITIVITY ANALYSES

High sensitivities towards changes in installed capacities of neighboring countries

CONCLUSION & OUTLOOK

Market interventions have set the quasi-absolute levels of security of electricity supply in Germany at danger

- The system has reached a tipping-point:
 - Levels of security of supply increasingly depend on weather influences
 - Imports from neighboring countries significantly contribute to the security of supply in Germany
- Capacity planning activities need to be coordinated on an European level
- The future electricity system might be economically more efficient as quasi-absolute levels of security of electricity supply come with high costs
- It is a priori difficult to predict all consequences of market interventions in complex energy systems
- Model results should not be used as basis for planned-economy approaches

The following **hypotheses** can be concluded for further scientific assessment:

- 1. Market-based mechanisms should be used to handle complexity
- 2. Unforeseeable interventions hinder investments in needed capacities
- 3. Long-sighted definition of reliable political frameworks is necessary

Thank you for your attention!

Do you have any questions or comments?

REFERENCES

- BNetzA, 2018a. Kraftwerksliste (Power plant list). Available at: https://goo.gl/L5zqPK [Accessed: 10 September 2018].
- BNetzA, 2018b. Kraftwerksliste zum erwarteten Zu- und Rückbau (Power plant list on expected expansions and decommissions). Available at: https://goo.gl/VZSTS1 [Accessed:12 March 2019].
- Brückl, O., 2006. Wahrscheinlichkeitstheoretische Bestimmung des Regel- und Reserveleistungsbedarfs in der Elektrizitätswirtschaft (Probabilistic Assessment of Demand for Grid Services and Reserves for Electricity Industry). TU München.
- Commission for growth, structural change and empoyment, 2019. Abschlussbericht (Final report).
 Available at: https://goo.gl/CpWehT [Accessed 6 Feb. 2019].
- entso-e, 2017. Mid-Term Adequacity Forecast 2017. Available at: https://www.entsoe.eu/outlooks/midterm/ [Accessed: 6 September 2018].
- entso-e, 2018a. Mid-Term Adequacity Forecast 2018. Available at: https://www.entsoe.eu/outlooks/midterm/ [Accessed: 29 October 2018].
- entso-e, 2018b. Data Differences in MAF 2017 and MAF 2018. Personal E-Mail communication.
- German government, 2011, Dreizehntes Gesetz zur Änderung des Atomgesetzes (Thirteenth Law amending the Atomic Energy Act) [Online]. Available at: https://goo.gl/56bz6P [Accessed:12 March 2019].
- German governmental parties, 2018. Koalitionsvertrag (Coalation Pact). Available at: https://goo.gl/M8BDvw [Accessed:12 March 2019].

