An Economical Analysis on the Installation of Photovoltaic Cell (PV) and Battery in the Residential Sector

Yoshiki Ogawa, Toyo University, Japan

The 16th IAEE European Conference, Ljubliana, Slovenia, Aug. 27, 2019

Contents of Presentation

- Purpose of this study
- Changes in electricity supply pattern by PV and battery installation
- **Cost changes in the past, present and future**
- Economics on PV and battery installation by FIT price changes and expected cost reduction
- Economics and performance changes by increasing PV and battery capacity
- **Concluding remarks**

Purpose of This Study

- Japanese Government has determined the new target of GHGs reduction to achieve 26% reduction from the 2013 level up to 2030 (in 2015).
- The GHGs emissions in 2017 recorded to the 8.4% down from the 2013 level (the 1.5% up from the 1990 level).
- In the long-run, the continuous increases in GHGs emission in the residential sector (offices and households) were largely influenced to the whole GHGs increases.
- In this study, we would like to analyze the effective uses of PV and battery in the residential sector under various capacity conditions and cost conditions.
- We also would like to discuss the future subjects of this important measure in the residential sector.

Setting Basic Conditions for Economic Simulations in This Study

- < Household sector >
- > Number of household: 1,000 households
- Size of PV on the roof: 4 kW Total: 4,000 kW
- < Commercial sector >
- ➢ Total floor area: 25,000 m²
- > Installed place of PV: roof floor of building or Open space
- < Electricity Charge >
- Household : Day 36.98 Yen/kWh, Intermediate 24.65 Yen/kWh Midnight 13.00 Yen/kWh, Average: 24.33 Yen/kWh

Commercial: Day 19.28 Yen/kWh, Intermediate 14.83 Yen/kWh Midnight 13.00 Yen/kWh, Average: 17.53 Yen/kWh

Installed Capacity Cases Treated in This Economics Simulation **Case (i): PV zero and battery zero (Base case)** Case (ii): PV zero and battery 20,000 kWh Case (iii): PV 8,000 kW and battery zero Case (iv): PV 8,000 kW and battery 20,000 kWh (Net zero case: small purchased and small **PV sold are almost balanced**) **Case (v): PV 44,000 kW and battery zero** Case (vi): PV 44,000 kW and battery 20,000 kWh (Absolutely zero case: no purchased) Winter (Jan.), Summer (July), Intermediate (Oct.)

Changes in electricity supply pattern (1)

Changes in electricity supply pattern (2)

Specific Characters on Electricity Supply Pattern by Season

	Commercial	Household	Purchase = or ≒0
Winter	↑ Daylight	\uparrow Whole day	Case (vi)
Summer	↑ Daylight	↑ Evening to midnight	Case (vi) and Case (iv)
Intermediate	↓ Daylight	↓ Whole day	Case (vi) and Case (iv)

- PV plays a powerful role on covering the commercial and household daylight demand.
- But the household and commercial demand from evening to midnight is covered especially by the combination of PV and battery.

Case Changes in Annual Supply Demand Balances Absolutely zero

Purchased E remains in (ii),(iii), (v). Large surplus PV is sold in (V), (vi)

Recent Changes on Economic Conditions

	2015	2018 Present
Battery cost (Yen/kWh)	200,000	150,000
PV cost (Yen/kW) (Mega & large)	300,000	200,000
PV cost (Yen/kW) (Small)	350,000	250,000
FIT price (Yen/kWh) (PV Large, Commercial)	27	18
FIT price (Yen/kWh) (PV Small, Household)	33	24

Changes in payback years -- Cost & FIT: Past (2015) and Present (2019) --

FIT Price Level Should be Considered from the Cost Competitiveness of PV < Competitive Level of PV Cost > Household Electricity Charge Level 24 Yen/kWh **Commercial Electricity Charge Level Industrial Electricity Charge Level Power Generation Full Cost Level Power Generation Variable Cost Level :**

< Past Changes in PV FIT Price> FY2012: Household 42 Yen/kWh, Commercial 40 Yen/kWh FY2014: Household 37 Yen/kWh, Commercial 32 Yen/kWh FY2016: Household 31 Yen/kWh, Commercial 24 Yen/kWh FY2017: Household 28 Yen/kWh, Commercial 21 Yen/kWh FY2018: Household 24 Yen/kWh, Commercial 18 Yen/kWh

Case simulation on payback years (1) -- Present cost, FIT: 24 Yen (S), 18 Yen (S) → 14 Yen (S&L) --

Case simulation on payback years (2) -- Present cost, FIT: 14 Yen (S&L) → 7 Yen (S&L) --

Future Reduction of PV and Battery Cost

- < Present PV and battery cost > Small size (Household) : 250,000 Yen/kW Large size & Mega Solar : 200,000 Yen/kW Battery : 150,000 Yen/kWh
- < Intermediate cost down >
- Small size (Household) : 180,000 Yen/kW
- Large size & Mega Solar : 150,000 Yen/kW (EU present level)
- Battery : 75,000 Yen/kWh
- < Expected future cost down >
- Small size (Household) : 100,000 Yen/kW
- Large size & Mega Solar : 100,000Yen/kW(IRENA expectation)Battery: 30,000Yen/kWh(US present level)

(Source) Shibata [2017], Agency of Resources and Energy [2017]

Case simulation on payback years (3) -- Present cost → Medium cost down, FIT: 7 Yen (S&L) --

Case simulation on payback years (3) -- Medium cost down \rightarrow Max cost down, FIT: 7 Yen (S&L) --

Summary of Analysis on FIT and Cost Down

- Though the PV FIT price was lowered from 2015 to 2019, the economics was improved because of cost down.
- If the PV FIT price is reduced to the target of 7 Yen/kWh, the economics will worsen under the present cost condition.
- The further cost down of PV and battery will be required to keep the preferable economics.
- Even though the PV FIT price is reduced to 7 Yen/kWh, the reasonable economics will be kept if the PV cost is reduced to 100,000 Yen/kW (one half) and the battery cost is reduced to 30,000 Yen/kWh (one fifth).
- The cost down will play a crucial role for the effective use of PV and battery in the residential sector.

Economics and performance changes by the increase on battery capacity (Case X)

Payback Period Changes by Lowering FIT and Cost Reduction in Case X

Economics and performance changes by the increase on mega PV capacity (Case Y)

Payback Period Changes by Lowering FIT and Cost Reduction in Case Y

Economics and performance changes by the PV increase (Battery: 20,000 kWh, Case Z)

Payback Period Changes by Lowering FIT and Cost Reduction in Case Z

Concluding Remarks

- For the installation of PV and battery in the residential sector, the cost reduction will be required essentially.
- Of these, the cost reduction of battery would play a important role on the effective uses of PV and battery to reduce electricity purchased from outside.
- Thus, the infiltration of cheaper battery will be anticipated eagerly.
- The past preferable PV FIT price makes large distortion (Huge PV expansion for the electricity sales) to the decision making of investment.
- The recent revision of FIT by Japanese Government is reasonable for the healthy expansion of PV and battery (purchased electricity reduction) in the residential sector.

Thank you very much for your kind attentions !!

Yoshiki Ogawa, Toyo University Contact: y-ogawa@toyo.jp