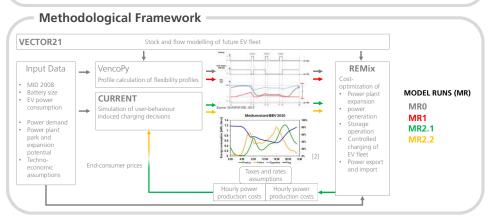


BEHAVIOUR-DRIVEN ELECTRIC VEHICLE CHARGING DECISIONS AND ITS IMPLICATIONS ON DEMAND RESPONSE FLEXIBILITY FOR THE INTEGRATION OF RENEWABLE ENERGIES IN GERMANY

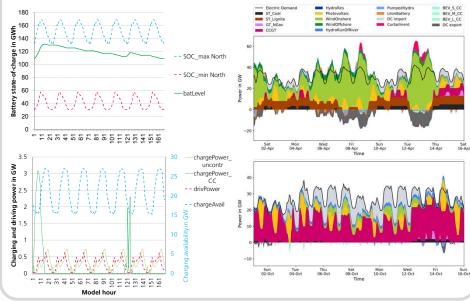
Niklas Wulff¹, +49-7116862348, <u>niklas wulff@dir.de</u> Feiks Steck³, +49-30670557913, <u>feikx steck@dir.de</u> Bent van den Adel³⁴, +49-1114887228, <u>carsten hoyer-klick@dir.de</u> Hans Christian Gils¹, +49-71168622477, <u>hans gils@dir.de</u> John Erik Anderson², +49-3067055374, <u>John Anderson@dir.de</u>


Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR)

German Aerospace Center (ULN) ³ Department of Person Transportation, Institute of Transportation Research, German Aerospace Center (DLR) ³ Institute of Vehicle Concepts, German Aerospace Center (DLR) ⁴ PEC project engineers & consultants GmbH

M1 results

Motivation


- Future electric vehicle (EV) fleets pose both challenges by increasing power demand and opportunities by providing short-term load shifting potential for the integration of fluctuating renewable energy sources into power systems [1,2]
- Individual charging decisions of EV car owners limit the load shifting potential of future EV fleet batteries [4] but are seldomly explicitly taken into account in power system modelling
- We for the first time present a modelling framework to assess user-behaviour induced charging decisions
- and apply it in a case study of the German power system including neighbouring countries in 2030
- Different methods of harmonization of models' scopes depending on respective models' dimensionalities

Results

VencoPy profiles (dashed) and REMix results (green solid lines) for first 10 days of modelling period (Jan, 1st-10th)

Optimal dispatch for northern (top) and southern (bottom) Germany

Sources

(1) Iajegaro, M., Goransson, L., Odenberger, M. & Johnsson, F. (2019). Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study. In: *Applied Energy*, 235, 1637-1650. https://doi.org/10.1016/j.apenergy.2018.10.133
[2] Pregger, T. & Luca De Tena, D. (2018). Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res. 42, 2670-2685, DOI: 10.1002/er.4056

[3] Steck, F., Anderson, J.E., Kuhnimhof, T. & Hoyer-Klick, C. (2019). Comprehensive transportation and energy analysis: A price sensitive, time-specific microsimulation of electric vehicles. Transportation Research Board 98th Annual Meeting. Washington, D.C.

 [4] Gils, H.C., Scholz, Y., Pregger, T., Luca de Tena, D. & Heide, D. (2017). Integrated modelling of variable renewable energy-based power supply in Europe. In: Energy, 123, 173-188. http://dx.doi.org/10.1016/j.Energy.2017.01.115
 [5] Infas Institut für angewandte Sozialwissenschaften and Deutsches Zentrum für Luft-und Raumfahrt e.V. Institut für Verkehrsforschung. Mobilität in Deutschland 2008 2009

Knowledge for Tomorrow Wissen für Morgen

М1 SELECTION M2 M1 results AGGREGATION M1 M2 M1 results M1, run 1 M1, run 2 M2 CONSECUTIVE RUNS M1, run 3 M1 results

Model harmonization

EXAMPLES OF MODEL DIMENSIONALITY HARMONIZATION

Dimension	CURRENT	REMix	Harmoniz. method
Spatial resolution	1 node	Germany in 2 nodes, others in 1 each	Consecutive runs
Temporal horizon	10 days in 2030	1 year in 2030	Cloning
Technol. resolution	1 technology	Transport: 3 technologies	Consecutive runs

Conclusions

Model harmonization has been carried out and methodological framework demonstrated

An EV fleet of 9 Mio. BEVs with an annual power demand of 5.3 TWh in 2030 may lead to

- Reduction of curtailment by 18% in Germany
- Increased PV (38% in southern Germany) and wind power (8% in northern Germany) capacities

