
How Effective was the UK Carbon Tax?—A Machine
Learning Approach to Policy Evaluation

By Jan Abrell, Mirjam Kosch, and Sebastian Rausch∗

January 2019

While carbon pricing is largely viewed as a rationale policy response
to climate change by the economics discipline, surprisingly little is
known about its performance from an ex-post perspective. This pa-
per evaluates the environmental and cost effectiveness of the UK
Carbon Price Support, a carbon tax levied on all fossil-fueled power
plants in the market. We propose a novel approach for estimat-
ing the treatment effect of a policy intervention in the absence of
a control group which leverages machine learning techniques, high-
frequency market data, and economic theory. We find that between
2013 and 2016 the carbon tax reduced emissions by 6.2 percent at
an average cost of 18.2 Euro per tonne. Simulating the machine-
learned model, we characterize the empirical conditions influencing
the effectiveness of the tax policy. We find that the ratio of car-
bon tax-exclusive prices for coal and natural gas is by far the most
important driver. (JEL Q41, Q42, Q58)

To avoid dangerous and costly climate change, the disposal space for carbon
dioxide (CO2) in the atmosphere is “scarce” and will soon be exhausted (McGlade
and Ekins, 2015; IPCC, 2018). In tackling this major 21st-century challenge, and
based on an elementary understanding of how today’s market-oriented systems or-
ganize economic activity based on scarce resources, economists have long been ad-
vocating for carbon pricing as an effective and efficient policy response (Nordhaus,
1994; Goulder and Parry, 2008; Metcalf, 2009). Currently, about 20-25 percent
of global CO2 emissions are regulated under some form of carbon pricing (World
Bank, 2018). While a plethora of studies offers ex-ante assessments of carbon pric-
ing using theoretical and quantitative simulation-based work,1 surprisingly little
is known about the ex-post effects of carbon pricing. This, however, is pivotal for
designing effective and efficient climate policies in the future.

This paper contributes by providing an ex-post evaluation of a real-world policy
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experiment of carbon pricing: the UK carbon tax, also known as the Carbon Price
Support (CPS). The CPS was introduced to enhance economic incentives for CO2
abatement in the heavily fossil-based UK electricity sector. As the CPS affects
the output and operating decisions of all fossil-fueled generation facilities in the
UK electricity market, the main challenge arises that no suitable control group or
counterfactual exists against which the impact on treated units can be evaluated.
In order to estimate the causal effects of the CPS policy intervention, it is thus not
possible to use standard program evaluation methods based on comparing treated
and untreated units.2 To overcome this problem, we develop and implement a new
approach which combines economic theory and machine learning (ML) techniques
to establish causal inference of a policy intervention in settings with observational,
high-frequency data when no control group exists. We apply our approach to
analyze the environmental and cost effectiveness of the UK carbon tax. To our
knowledge, this is the first paper in economics to incorporate ML methods to
conduct causal inference of carbon pricing.

In a nutshell, the idea of our new approach to estimate treatment effects in the
absence of a control group is as follows. First, we derive a structural causal model of
the observed outcomes (electricity output by power plant) based on an economic
model of wholesale market activity. Second, we use ML techniques—which are
optimized for out-of-sample prediction (Mullainathan and Spiess, 2017)—to train
the causal model, i.e. to estimate a predictor function for electricity output of each
plant in the market given fuel prices, available capacities, and demand. We train
the model based on both pre- and post-intervention data combining hourly panel
data of electricity output at the plant-level with data on hourly electricity demand,
available plant capacity, fuel and carbon prices, and temperature. To overcome the
problem of insufficiently large variation in the treatment variable—the UK carbon
tax rate is adjusted on an annual basis leaving us with only four CPS levels over our
period of analysis—we exploit the variation in the relative market prices for coal
and natural gas, including the prices for European Emission Allowances (EUA)
and the CPS. As the market substitution from carbon-intensive coal-fired power
plants to less polluting natural gas plants (coal-to-gas switch) hinges on relative
fuel prices, we identify the impact of the CPS on plant output by using the CPS-
inclusive fuel price ratio as the pseudo-treatment variable. In a third step, we rely
on the concept of the “do-operator” (Pearl, 2009) to obtain the treatment effect for
each power plant. Specifically, we estimate the treatment effect as the difference
between predicted outcomes with and without policy. By using the difference of
predicted outcomes to estimate the treatment effect, we account for the impact
of unobserved variables as well as systematic prediction errors in the ML-trained
model.

An important feature of our approach is to identify and explicitly represent the
channels through which the policy intervention affects the outcome variable. This
has three important advantages: First, using a structural causal model, we are able

2Such as, for example, difference-in-differences (DiD), regression discontinuity design, and synthetic
control methods (Angrist and Pischke, 2008; Athey and Imbens, 2017).
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to estimate the treatment effect even in the absence of a control group. Second, it
opens up the possibility to go beyond the estimation of the total treatment effect
by using the ML-trained model to assess the impact of different (hypothetical)
treatment intensities using simulations. Third, as our pseudo-treatment variable—
the carbon price-inclusive fuel price ratio, which trivially contains the case of no
CPS policy—is already observed before the CPS policy is introduced, we can use
observations from both the pre- and post-treatment period to train the model. This
improves the basis for learning about the key mechanism between input prices and
output through which the policy intervention impacts the economic behavior of
firms’ output.

Based on our new approach, the ex-post evaluation of the UK carbon tax yields
the following main insights. First, our analysis provides strong evidence that a
carbon tax is an effective regulatory instrument to reduce CO2 emissions: the CPS
induced a substitution away from “dirty” coal to cleaner natural gas-fired power
plants—replacing about 15 percent or 46 TWh of coal-based generation and reduc-
ing emissions by 6.2 percent between 2013 and 2016. Second, the abatement of one
ton of CO2 has brought about on average (over all fossil-based plants and the 2013-
2016 period) additional costs of e 18.2 in total for consumers and fossil-based elec-
tricity producers. Third, simulating the machine-learned model, we characterize
the empirical conditions which influence the environmental and cost effectiveness
of the tax policy. We find that there is substantial heterogeneity in the carbon
tax-induced market impacts over time, which are mainly driven by the level of the
CPS and the ratio of carbon tax-exclusive prices for coal and natural gas.

Our paper contributes to the literature in several important ways. First, we add
to the recent and emerging literature on the use of ML techniques in economics
and quantitative social science. Traditionally, ML methods have been used for
pure prediction problems such as demand estimations (Bajari et al., 2015). More
recently, ML methods have provided important new tools to improve the estima-
tion of causal effects from observational data in high-dimensional settings as they
enable to flexibly control for a large number of covariates (for overview articles see,
for example, Varian, 2014; Athey, 2017; Athey and Imbens, 2017; Mullainathan
and Spiess, 2017). Burlig et al. (2017) and Cicala (2017) are two recent examples
using ML algorithms to estimate causal effects. Our approach differs in two im-
portant ways. First, they deal with discrete treatment leading to a change in the
data generating process (DGP) between the pre- and the post-treatment period.
They, therefore, use the pre-treatment period to train a model predicting the post-
treatment outcome without the intervention. In contrast, we deal with a setting
with an invariant DGP and continuous treatments. Therefore, we are able to train
the model on the full sample, but at the same time have to rely on the continuity
of treatment or, alternatively, have to identify a variable with the same causal
impact as the treatment variable. Second, ML based predictions have to deal with
prediction errors impacted by unobserved variables. Burlig et al. (2017) and Ci-
cala (2017) assume that prediction errors have similar trends across treatment and
control groups. Therefore, they use a DiD estimator to eliminate biases caused by
prediction errors. In contrast, we eliminate this bias comparing predicted values
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of observed and counterfactual values, i. e., we assume that prediction errors are
independent of treatment levels. While Varian (2016) mentions the possibility of
estimating treatment effects by constructing the unobserved counterfactual when
no control group is available, to the best of our knowledge this paper provides the
first empirical implementation of this idea in economics.

Second, a recent and growing literature, following the U.S. shale gas boom after
2005, uses the variation in natural gas prices to empirically estimate the impact of
fuel prices on CO2 and other pollutants stemming from electricity generation (see,
for example, Knittel, Metaxoglou and Trindade, 2015; Linn, Muehlenbachs and
Wang, 2014; Holladay, Soloway et al., 2016; Holladay and LaRiviere, 2017). Cullen
and Mansur (2017) and Lu, Salovaara and McElroy (2012) exploit the fact that
the introduction of a carbon price impacts emissions through the same economic
mechanism as a change in gas prices. Similar to our approach, these studies use
the variation in natural gas prices to estimate the impact of a hypothetical carbon
pricing policy on emissions. In contrast, we contribute with an ex-post assessment
of a real-world, existing carbon tax policy.

Third, studies investigating the environmental impact of carbon pricing in the
electricity sector are abundant but the vast majority of the work relies on numerical
simulation methods (see, for example, Delarue, Ellerman and D’Haeseleer, 2010b;
Delarue, Voorspools and D’Haeseleer, 2008; Rausch and Mowers, 2014; Goulder,
Hafstead and Williams III, 2016). Some of the economic mechanisms at work,
which we empirically identify in our analysis, have already been analyzed using
ex-ante policy analysis based on analytical and simulation models. For example,
Kirat and Ahamada (2011) show that the high permit prices induced a switch
in the merit order from coal to gas. Delarue, Ellerman and D’Haeseleer (2010a)
show that abatement does not only depend on the level of carbon prices but also
on demand and the ratio between coal and gas prices. Some studies model the
fuel switching potential for hypothetical carbon pricing policies as in Pettersson,
Söderholm and Lundmark (2012) for the EU ETS and Chevallier et al. (2012) for
the UK.

Fourth, there exists only a handful of studies using econometric and program
evaluation methods to quantify the environmental impacts of carbon pricing, be it
through a tax- or quantity-based approach to regulation. An overview of the work
focusing on the EU ETS is provided by Martin, Muûls and Wagner (2016). The
paper by McGuinness and Ellerman (2008) represents, to the best of our knowl-
edge, the only analysis of empirically estimating the impact of permit prices on
the output of power plants in the UK. Using a panel regression, they quantify the
emissions offset in the British power sector for the pilot trading period of the EU
ETS. Martin, De Preux and Wagner (2014) analyze the impacts of the Climate
Change Levy on manufacturing plants in the UK. Using panel data on manufac-
turing plants in the UK, their identification strategy builds on the comparison of
outcomes between plants subject to the full tax and plants paying only 20 percent
of the tax. With this paper, we contribute to the scarce empirical evidence on the
economic impacts of carbon taxes by applying an estimation strategy which can
be used in a setting without a control group.
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The remainder of this paper is organized as follows. Section I presents our
methodological framework to estimate the treatment effects of a policy intervention
in the absence of a control group. Section II details how we apply the framework
to assess the effectiveness of the UK carbon tax, including a description of the
data and our empirical strategy. It also scrutinizes the validity our approach for
estimating the causal effects of the policy intervention. Section III presents and
discusses our main findings. Section IV concludes.

I. Conceptual Framework

A. Overview

We begin by providing a conceptual description of our proposed framework to
estimate the causal effects of a policy intervention when a suitable control group
does not exist and when treatment intensity varies over time but not across treated
units. The framework comprises three major steps:

Step 1: Derive a structural model of the observed outcomes based on economic
theory which is invariant to the policy intervention;

Step 2: Use machine-learning (ML) techniques to train the causal model, i.e. to
estimate a predictor of outcomes based on the causal model;

Step 3: Estimate the treatment effect as the difference between predicted out-
comes under observed and counterfactual values of the policy intervention
(while holding other controls constant).

Before turning to a detailed description of each of the three steps, two general
features of our proposed method are important to emphasize. First, it does not
rely on the existence of multiple units. The estimation of the predictor function
requires sufficient data for a single unit. As a consequence, we derive a time-unit
specific treatment effect which can also be computed for a single unit. Second, by
relying on ML techniques we allow for non-parametric predictors and therefore for
the non-parametric identification of treatment effects.

B. The Causal Model

Consider a population model according to which the outcome yit of unit i in
period t is generated according to

yit = fi (xit, hit, zt ) + εit ,(1)

where zt is the treatment received by all units at time t. xit and hit are vectors
of observed and unobserved control variables, respectively. εit is a random noise
which is distributed with zero mean, E[εit ] = 0 and variance σ2

ε , εit ∼ (0, σ2
ε ). εit is

independent of controls and treatment:

εit y (xit, hit, zt ) ∀i, t .(2)
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For each unit i, we observe a sample of outcomes Yi := (yi1, yi2, · · · , yiT )> and
control variables Xi := (xi1, xi2, · · · , xiT )> of size T , where T is the number of time
periods. While outcomes and controls are observed at the unit level, observed
treatment levels are uniform across the population, i.e. we only observe the sam-
ple of treatment levels Z := (z1, z2, · · · , zT )>—as is, for example, the case for an
environmental tax which is levied equally on all units in the market.

We are interested in identifying the causal effect on outcome which is induced
by a change in the treatment level from its observed value zt to a specific value
zt . To derive the effect of a change in the treatment variables z, we make use
of an important assumption on the data generating process given by equation
(1): the function fi is invariant to changes in the treatment and control variables
(Peters, Bühlmann and Meinshausen, 2016) or, put differently, fi is assumed to be
autonomous (Haavelmo, 1944; Aldrich, 1989).Given the invariance property, we are
able to change the treatment variable and use the autonomous process to calculate
the outcome under the changed treatment. The treatment effect is then defined
as the difference between observed outcomes yit , which realized under observed
treatment levels zt , and counterfactual outcomes yzit under hypothetical treatment
levels zt :

δzit := yit − yzit ∀i, t(3)

The fundamental problem of causal inference (Holland, 1986), often also referred
to as the missing data problem (Rubin, 1974), is that we do not observe yzit and
hence cannot directly calculate the treatment effect. If the treatment level varies
across units, for example, matching or difference-in-differences (DiD) methods have
been put forward to solve this problem by exploiting the existence of treated and
untreated, i. e., control units. The fundamental challenge of our policy evaluation
problem is, however, that the treatment (i.e., the carbon tax in the electricity
sector) is uniform across the entire population (i.e., it is imposed equally on all
power plants in the market). We are thus charged with the problem of finding a
way to estimate the causal effect of the policy intervention without the possibility
of relying on an untreated control group.

We propose to overcome the missing data problem by making use of counter-
factual simulation which can create the unobserved outcomes yzit . The main idea
of our proposed approach is to predict the outcome for a counterfactual level of
the treatment using a causal model for which we can change, i.e. control, the
treatment variable. Pearl (2009) conceptualizes such a counterfactual intervention
based on a causal model by his do () operator. Given the possibility to perform
do ()-interventions, we can re-write the treatment effect as:

δzit := yit − fi (xit, hit, do (zt = zt )) − εit ∀i, t .(4)

In order to calculate counterfactual outcomes, the following two assumptions
concerning the interaction between controls and the treatment variable have to be
satisfied:
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ASSUMPTION 1: Observed controls are independent of the changes in the treat-
ment variable:

xit y zt .

ASSUMPTION 2: Unobserved controls are conditionally independent to changes
in the treatment variable given the observed controls:

hit y zt |xit .

Assumption 1 rules out effects of the treatment variable on observed controls.
This assumption is necessary as the observed controls are held constant in the
counterfactual simulation. Otherwise, if z influences x, there would be an indirect
effect on the outcome, which would bias our estimate of the treatment effect.

Assumption 2 rules out effects of the treatment variable on unobserved variables
after controlling for the observed variables. Again, if z would influence h, there
would be an indirect effect on the outcome. It is important to note that Assump-
tion 2 does not rule out an effect of unobserved controls. It only implies that once
we include all observed controls into the model, the impact of unobserved variables
is independent of the treatment level, and, thus, a change in the treatment does
not affect the outcome indirectly by changing unobserved variables.

C. Using Machine Learning for Prediction Models

To predict counterfactual outcomes yzit , we need an estimator f̂i of the function
fi that produces reliable out-of-sample predictions. We harness the power of ML
methods which—in contrast to traditional econometric methods focused on consis-
tently estimating in-sample parameters of f —are optimized to predict the value
of the outcome variable (Mullainathan and Spiess, 2017).

Out-of-sample optimization is typically achieved by minimizing the expected
prediction error. We use the mean squared error (MSE) as a measure of prediction
quality whose expected value can be decomposed as follows:3

E[MSEi] = E[
(
yi − f̂i

)2
] = σ2

ε +
(
E[ f̂i] − fi

)2︸          ︷︷          ︸
= Bias2( f̂i)

+E[
(
E[ f̂i] − f̂i

)2
]︸              ︷︷              ︸

= Variance( f̂i)

.(5)

The expected prediction error thus consists of three parts: an irreducible popu-
lation error, which corresponds to the variance of the random noise σ2

ε (Hastie,
Tibshirani and Friedman, 2008), and bias and variance terms which are both re-
ducible. Standard econometric techniques, such as ordinary least squares (OLS)
regression, aim at minimizing the bias while allowing for high variance. While
these methods are thus capable of representing very well the sample data, they are
prone to over-fitting and they yield prediction outcomes that are highly dependent
on the observed sample.

3See, for example, Hastie, Tibshirani and Friedman (2008) and Gareth et al. (2013).
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ML methods, in contrast, solve a bias-variance trade-off in order to find the
best prediction model. ML methods address the bias-variance trade-off by intro-
ducing hyper- or tuning parameters in the estimation function. These parameters
control for model complexity by decreasing the variance at the cost of a higher
bias. The selection of hyper-parameters α is achieved through a process called
cross-validation (CV), which makes optimal use of the available data. The CV
process starts by splitting the observed sample into several subsets. One of the
subsets, called the training set, is then used to estimate the predictor for a given
set of hyper-parameters, f̂ αi , by minimizing the expected in-sample MSE:

f̂ αi := arg min
fi ∈F

∑
t

[(
yit − f̂ αi (xit, zt )

)]2
(6)

where F denotes the set of all possible functions fi. The out-of-sample MSE is
then computed on the remaining data—called the test or hold-out set—which
has not been used for the estimation. Repeating this procedure for all subsets and
averaging over all out-of-sample MSE yields an estimate of the expected prediction
error for a given set of hyper-parameters α.

The optimal set of hyper-parameters α∗ is the one that minimizes the expected
prediction error which is obtained from using a grid search over different candidate
sets. Given α∗, the final predictor f̂ α∗i is obtained by solving the problem in
equation (6) on the full sample of data. Finally, the true value of outcome in
equation (1) can be written as the the sum of the predicted value and the prediction
error ξ (xit, hit, zt ):

yit = f̂ α∗i (xit, zt ) + fi (xit, hit, zt ) − f̂ α∗i (xit, zt )︸                             ︷︷                             ︸
=:ξ(xit ,hit ,zt )

+εit .(7)

D. Estimation of Treatment Effects through Counterfactual Simulation

In the last step, we can use f̂ α∗i to predict the missing outcome under a counter-
factual level of the treatment. A simple estimator of the treatment effect would
then compare observed outcomes under treatment with predicted outcomes with-
out treatment as suggested by equation (4). Doing so would, however, result in
bias estimates due to the prediction error shown in equation (7).4 To estimate the
treatment effect, we therefore need to eliminate the prediction error. This requires
a further assumption:

ASSUMPTION 3: The prediction error ξ (xit, hit, zt ) is independent of the treat-
ment:

ξ
(
xit, hit, z0

t

)
= ξ

(
xit, hit, z1

t

)
= ξ (xit, hit ) ∀z0

t , z
1
t

4Using the definition of the treatment effect (3) and equation (7), an estimator comparing the observed
values yit with a predicted counterfactual value you yield: δ̂zit = yit − f̂ α∗i (xit , zt = zt ) = yit − yzit +
ξ (xit , hit , zt = zt ) + εit . Therefore, this estimator would be biased by the prediction error.
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Assumption 3 implies that the prediction error only depends on observed and
unobserved variables, but does not change between the prediction of observed and
counterfactual outcomes. Consequently, it allows to estimate the treatment effect
δ̂zit as the difference between the predicted value of observed outcomes and predicted
values of counterfactual outcomes:

δ̂zit = f̂ α∗i (xit, zt )︸       ︷︷       ︸
Prediction based on
observed treatment

− f̂ α∗i (xit, zt = zt )︸              ︷︷              ︸
Prediction based on

counterfactual treatment

(8)

= yit − ξ (xit, hit ) − εit −
[
yzit − ξ (xit, hit ) − ε

z
it

]
= yit − yzit + φit ,

where φit := εzit − εit is random noise with mean zero. As we only change the
treatment variable and as observed and unobserved variables are independent of
the treatment (Assumptions 1 and 2), Assumption 3 allows us to eliminate the
prediction bias and the impact of unobserved variables in the estimation and ,
therefore, identification of the treatment effect. In that, it has an analogy to the
parallel trend assumption in a DiD setting.5

A potential concern for Assumption 3 and therefore the estimation of δ̂zit is the
quality of predictions based on unobserved counterfactual values. To ensure a valid
prediction, two additional assumptions regarding the data need to be satisfied.

First, although ML algorithms are designed to produce reliable out-of-sample
predictions, they only locally approximate the true model in the range of observed
treatments and covariates. It is thus unclear how the estimated functions behave
for covariate and treatment combinations which lie outside of the range of observed
combinations. To rule these cases out, we need the positivity or covariate overlap
assumption (Samii, Paler and Daly, 2016):

ASSUMPTION 4: Each combination of the counterfactual treatment z and co-
variate level X has been observed, i.e.,

Pr[z |X] > 0.(9)

While it is highly unlikely that all combinations of z and X have been observed, As-
sumption 4 requires that these combinations should lie within the range of observed
data.

The last assumption is concerned with the variation in the level of treatment and
controls which is needed to estimate a valid predictor of the underlying structural

5Assumption 3 is one of the main differences to the method used by Burlig et al. (2017) and Cicala
(2017). They assume that ”...treated and untreated schools to be trending similar on prediction errors...”
(Burlig et al., 2017, pp. 18) or, likewise, ”Parallel trends in unobservalbes...” (Cicala, 2017, Assumption 2.
p. 23) in the sense that the ”contemporaneous error”, i.e., the prediction error, is behaving similar across
regions. Under these assumptions, they are able to differentiated out the prediction error and impact of
unobservables using control groups in DiD approach. As we lack the control group, we need to assume
that the prediction error is independent of the treatment to differentiate out the impact of unobservables
and systematic prediction errors.
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process:

ASSUMPTION 5: The variation in the level of treatment and controls over time
is sufficiently large.

Assumption 5 implies that the impact of a change in the treatment on the out-
come can be predicted. For many policy interventions, however, treatments are
discrete and do not change often which causes problems for estimating the predic-
tor. A possible remedy is to find a control variable that impacts outcome through
the same causal mechanism as the treatment variable. In fact, changing such a con-
trol variable implies the same change in outcome as a change in the the treatment
variable itself. For example, an archetypical problem in economics is to estimate
the impact of imposing an input tax (e. g., a carbon tax). Here, the tax change may
be a one-time event or it may comprise a few discrete tax changes. The impact
of the tax on input costs follows, however, the same mechanism as a change in
input prices. It is then possible to use the variation in input prices to identify the
causal mechanism of the input tax—with the consequence that the counterfactual
simulation then corresponds to a change in input costs directly implied by the tax
change.

II. Application of the Framework: How Effective Was the UK Carbon Tax?

We apply the proposed framework to assess the impact of the UK carbon tax
on carbon abatement. In Sections II.A and II.B we provide information about the
policy background and draw on economic theory to derive the causal model (Step
1). Section II.D describes our empirical framework to estimate the treatment effect
(Steps 2 and 3). Section II.E scrutinizes the validity of our identifying assumptions
given the context of our empirical application.

A. The Policy Intervention and Confounding Factors

The main policy instrument of the UK government to decarbonize the heavily
fossil-based UK electricity sector is the Carbon Price Support (CPS), an annual
constant tax on fossil fuel use in the wholesale electricity market (Department of
Energy & Climate Change, 2016). The CPS intends to close the gap between an
envisaged minimum carbon price, the so-called Carbon Price Floor (CPF) and
the price of European Emission Allowances (EUA) traded under the European
Emissions Trading System (ETS).6 Table 1 shows the evolution of the EUA, CPS,
and the total carbon price over time. Since the introduction of the CPS in 2013,
the CPF always exceeded the EUA price, thus resulting in a positive CPS. In
2013, the modest level of the CPS led to a more than two-fold increase of the total

6Prior to the introduction of the CPS, the CPS level was conceptualized to be determined two years in
advance as the difference between the EUA future price and the CPF. In 2013, the CPF was announced
to increase up to 34.5 (69) e/tCO2 in 2020 (2030). At the end of 2015, however, the UK government fixed
the CPS rate to 21.6 e/tCO2 until 2021 (Hirst, 2017). In the 2017 budget, the UK government expressed
its confidence that “the Total Carbon Price, currently created by the combination of the EU Emission
Trading System and the Carbon Price Support, is set at the right level [. . . ]” (HM Treasury, 2017, Article
3.46), thus indicating that the CPS is likely to stay at its current level in future years.
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Table 1. Descriptive statistics of UK electricity market: carbon prices, generation and import capacity,
fuel prices, output, and demand.

Year
2009 2010 2011 2012 2013 2014 2015 2016

Carbon prices [e per ton of CO2]a
EUA 13.23 14.36 13.02 7.37 4.76 6.22 7.34 5.26
CPS (eper ton) – – – – 5.85 12.17 24.70 21.60
Total carbon price 13.23 14.36 13.02 7.37 10.61 18.39 32.04 26.86
(=EUA+CPS)

Capacities [GW]
Coal 25.3 25.3 25.3 24.5 19.9 18.8 19 13.8
Gas 27.3 29.5 30.2 30.3 29.3 27.4 26.6 26.1
Import 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0

Fuel prices [e per MWh thermal energy]
Coal 7.60 10.46 13.20 10.90 9.28 8.55 7.70 8.12

(0.74) (1.55) (0.45) (0.68) (0.54) (0.35) (0.56) (2.27)
Gas 11.82 16.84 22.17 25.07 27.34 21.16 20.03 14.38

(4.47) (3.53) (1.31) (2.01) (2.79) (3.29) (2.19) (2.53)
Ratiob 0.89 0.79 0.71 0.51 0.43 0.59 0.69 0.88

(0.19) (0.07) (0.05) (0.06) (0.04) (0.09) (0.08) (0.08)

Hourly demand and generation [GWh]
Demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54

(6.51) (6.58) (6.63) (6.77) (6.93) (6.23) (6.36) (6.43)
Gas generation 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23

(3.01) (3.07) (3.79) (4.16) (5.12) (4.87) (4.43) (4.75)
Coal generation 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27

(5.80) (5.29) (5.14) (4.04) (3.18) (4.10) (3.45) (2.88)

Notes: Standard deviations in parentheses. CPS taken from Hirst (2017) and HM Revenue & Customs
(2014) converted with exchange rate data from ECB (2017). Daily European Emission Allowances (EUA)
spot prices taken from EEX (2017). Further detail about data sources and calculations is provided in
Section II.D. aAs the CPS is adjusted in April of every year, the annual EUA and CPS carbon prices
for the years 2013-2016 are calculated based on the period from April to March of the subsequent year.
bCoal-to-gas fuel price ratio, inclusive of EUA and CPS carbon prices, calculated according to equation
(16).

carbon price for the UK electricity industry. In 2016, the CPS was set at the level
of e 21.60, six times higher than the annual EUA price in this year.

To develop some first intuition for the impacts of the CPS on electricity supply
and emissions, Figure 1 plots the short-run supply curve (i.e., ordering marginal
cost of fossil-based power plants from low to high) for two situations:7 a hypothet-
ical situation without the CPS where marginal emissions are only priced at the
costs of an EUA (Panel a) and the observed situation with the CPS (Panel b).
We observe two main changes. First, the supply curve shifts upward—indicating
the increase in the marginal cost of all fossil plants. Second, as natural gas-fired
power plants are less carbon-intensive, they are less affected by the carbon price
increase and, therefore, become relatively cheaper. Gas plants are thus dispatched
into the market and replace emissions-intensive coal-fired plants, in turn reducing
emissions. Consistent with this basic mechanism, Figure 2 (Panel (a))shows that

7The illustrative calculation shown in the figure is based on one particular hour and assuming average
heat efficiencies for plants; it ignores the fact that heat efficiencies, and hence the impact of CPS on
individual plants, varies over time depending on temperature and other factors.
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(a) Based on hypothetical situation without CPS (b) Based on observational data with CPS

Figure 1. Illustrative impact of the UK carbon tax on the short-run market supply curve for electricity

Notes: The graph shows the merit order curve of fossil-based power plants on December 19, 2016, at 5:00
p.m. based on the data described in Section II.D. Hydro, nuclear, and renewable power plants are omitted
and their total generation is subtracted from demand as they are always dispatched first given that their
marginal cost are smaller than those of fossil-based plants. Marginal costs are calculated according to
equation 22.

(a) Annual electricity generation by technology and CO2
emissions over time
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(b) Monthly coal and gas prices with and
without CPS

Figure 2. Generation, emissions and fuel prices

Notes: Own calculations. Electricity generation by fuel is based on ELEXON (2016). “Base” comprises
electricity generated from hydro and nuclear power plants. “Renewables” comprises wind, solar, and other
(mainly biomass) generation where generation from wind and solar is corrected for generation embedded
in final demand (Nationalgrid, 2016). “Emissions” refer to reported values from the EU Transaction Log
(European Commission, 2016). Fuel prices for coal and natural gas are taken from EIKON (2007). CPS
rates are reported by Hirst (2017) and HM Revenue & Customs (2014), and the EUA price by EEX (2017).
Carbon price inclusive fuel prices refer to MWh of thermal energy.

starting with the introduction of the CPS in 2013 the annual market share of coal-
fired generation sharply decreased while the share of gas-fired plants increased;
over the same period, UK’s electricity-sector emissions sharply declined.

While Figures 1 and 2 provide some first evidence that the CPS may have led
to a reduction in electricity-sector CO2 emissions, there is a host of other factors
which are likely to have affected the observed market outcomes.

First, the fraction of electricity demand to be covered with domestic fossil-based
generation from coal and natural gas has declined between 2013-2016. This is due
to, at least, three factors: (i) negative macro-economic shocks and energy efficiency
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improvements; (ii) targeted support policies have likely pushed in zero (or low)
marginal-cost generation from renewable energy whenever the underlying natural
resource (wind or solar) was available; and (iii) UK’s electricity imports have
slightly increased likely due to both an expansion of newly built inter-connector
lines (see Table 1) and the fact that the CPS has increased the domestic cost of
generation relative to import prices.

Second, the switch from coal to natural gas was likely also triggered by substan-
tial changes in relative fuel price. Between 2013-2016, natural gas prices declined
by nearly 50 percent while coal prices remained largely constant (see Figure 2
Panel (b) and Table 1). This suggests that even without the introduction of the
CPS there may have been a marked shift towards gas-fired generation in the UK
electricity market.

Third, the decisions to shut down coal-fired plants, reflected in the available pro-
duction capacity for coal (see Table 1), are likely influenced by factors which are
unrelated to the CPS. A main reason for these closures is the European “Large
Combustion Plant Directive” (LCPD), which sets specific limits on local pollutant
emissions for power plants constructed after the year 1987. The LCPD left elec-
tricity firms essentially the choice to either comply with the emissions limits or to
“opt out” in which case a maximum operation time of 20’000 hours was granted
until the end of 2015 when eventually the plant had to be shut down (European
Commission, 2001).

In summary, there is ample evidence that the decline in coal generation and CO2
emissions in the UK power sector which has occurred since the introduction of the
CPS in 2013 has likely been the result of a multitude of factors comprising market
developments (international fuel prices and electricity demand) and a variety of
different policy measures (renewable energy support policies, transmission infras-
tructure measures, and the CPS). We next present our empirical framework we
use to identify and measure the market impacts brought about by the CPS alone.

B. Determinants of Wholesale Electricity Market Activity

We apply microeconomic theory based on a dispatch and peak-load pricing model
of the wholesale electricity market (Boiteux, 1960) to pre-select the variables which
are potentially important in determining wholesale market outcomes and how they
respond to a carbon tax policy. In a subsequent step, these pre-selected variables
then enter the ML algorithm to estimate the empirical prediction model which we
use for counterfactual analysis to determine the treatment effect of the UK CPS.

COMPETITION IN UK’S WHOLESALE ELECTRICITY MARKET.—–The UK wholesale elec-
tricity market is a liberalized market based on exchange and over-the-counter
trades. In power exchanges, market participants can trade forward and real-time
contracts.8 In the day-ahead market, market participants trade electricity for each
hour of the next day. Given the new information in the market, these trades can
be revised using the intra-day market which closes one hour before delivery time.

8Real-time trading of UK electricity mainly takes place in the EPEX-Spot and Nordpool power ex-
changes. Forward contracts are traded via the InterContinental Exchange (ICE) and NASDAQ.
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In 2014 the UK regulator asked for an investigation of anti-competitive behavior
in the UK energy market. In its final report, the “Competition and Markets Au-
thority” (CMA, 2016) did not find evidence for anti-competitive behavior in the
wholesale electricity market.

A SHORT-RUN EQUILIBRIUM MODEL OF WHOLESALE MARKET ACTIVITY.—–We concep-
tualize the UK wholesale electricity market as being composed of firms which are
assumed to operate under perfect competition maximizing profits using production
quantities as the decision variable. Generation units of a firm are represented at
the plant level where total production of plant i ∈ I in hour t ∈ T is denoted by Xit .
The set I comprises thermal carbon-based generation plants (i.e., hard coal, lignite
coal, natural gas) and other conventional plants (i.e., nuclear, hydro, pump storage,
biomass). Generation from wind and solar is modeled exogenously. Production at
any point in time cannot exceed the given effective production capacity Kit :

(10) Kit ≥ Xit ⊥ µit ≥ 0 ∀ i, t

where the time-dependency of capacity mainly reflects maintenance and unsched-
uled plant outages. µit is the shadow price of capacity for technology i at time t.
The value of capacity in a given hour is zero (µit = 0) if production is below the
capacity limit; it is positive (µit > 0) if the capacity constraint is binding.9

Marginal cost cit (ϑit ) of a generation unit at time t depend on exogenous factors

ϑit = {p
f
t, θ

f , ηit, pEUA
t , pCPS

t }

comprising the time-dependent price of the fuel f used for electricity generation
(pf

t), the carbon content (θ f ), the time-varying EUA and CPS prices on CO2
emissions (pEUA

t and pCPS
t ), and time-specific heat efficiency (ηit) reflecting ambient

temperature (tempt) and potential efficiency losses due to part-load operation.
In equilibrium, the following zero-profit condition, relating unit costs (comprising

marginal costs and the opportunity costs for capacity) to unit revenues determines
the output of generation unit i, yit :

(11) cit (ϑit ) + µit ≥ Pt ⊥ yit ≥ 0 ∀ i, t

where Pt measures unit profits or the wholesale electricity price at time t.10 If unit
cost exceed unit profit, positive generation would lead to losses and thus yit = 0.
Given perfect competition and no barriers for market entry or exit, zero profits
in equilibrium (i.e., unit cost equal to unit profit) determine a positive level of
electricity supply yit > 0.

The market for electricity in a given hour balances if total supply is equal to

9We use the “⊥” operator to indicate complementarity between equilibrium conditions and variables.
A characteristic of economic equilibrium models is that they can be cast as a complementarity problem,
i.e. given a function F: Rn −→ Rn , find z ∈ Rn such that F(z) ≥ 0, z ≥ 0, and zT F(z) = 0, or, in short-hand
notation, F(z) ≥ 0 ⊥ z ≥ 0 (Mathiesen, 1985; Rutherford, 1995).

10Equation (11) determines the price as the marginal cost of the marginal generator, i.e. the generation
that earns zero capacity rent in the given hour (µit = 0).
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hourly demand Dt which, given our short-run analysis, we assume to be given and
price-inelastic:

(12)
∑
i

yit = Dt ⊥ Pt “free” ∀ t .

Equations (10)–(12) imply that given demand the equilibrium allocation of hourly
electricity supplies is determined by the available capacity and the marginal cost
ordering of technologies. The equilibrium outcome of each plant i thus depends
on demand, and its own as well as the marginal cost and available capacities of all
other plants (indicated by −i):

y∗it = y∗it
(
Dt, cit (ϑit ),Kit, c(−i)t (ϑ−it ) ,K(−i)t

)
,∀i, t .(13)

Equation (13) identifies the major determinants of power plants’ outputs (includ-
ing their responses to a carbon tax policy) by modelling wholesale market activity
based on first principles of producer behavior and equilibrium-based market inter-
actions.

Equation (13) should not be viewed as portraying the output decision of a single
plant: the dependence of the equilibrium quantities on own and other generators’
marginal cost and demand can also be understood in terms of bid functions on the
market level. Under perfect competition each generator bids the whole capacity
at marginal cost into the market. The market operator then chooses the cheapest
bids until demand is fulfilled. Consequently, the acceptance of a bid depends on
the ordering of marginal cost in the entire market as well as available capacities
and demand.

C. Data Sources and Construction.

To empirically operationalize and embed the model of equation (13) in a frame-
work which enables estimating the treatment effect of the UK CPS on power plants’
output decisions, we need measurements for the empirical counterparts of all RHS
variables in (13). We thus use a rich and publicly available panel data of hourly
generation for each UK fossil-fuel power plant in the period from 2009-2016. In
addition, we include data on available hourly capacity, technical characteristics
of each plant, non-fossil generation, demand, daily fuel and carbon prices, and
weather data.

HOURLY OUTPUT BY PLANT (yit ).—–We use “final physical notification” (FPN) data
provided by the operator of the UK electricity balancing system (ELEXON, 2016)
as the hourly generation of each fossil power plant unit for the whole sample period.
FPN reports the final, 5 minutes before delivery time generation announcement of
power plant owners to the grid operator. Although the grid operator might adjust
this announcement due to the need for balancing power or re-dispatching measures,
these data can be viewed as a reasonable measures for generation (which is not
directly observable for UK power plants). As the data on carbon emissions are
only available at a plant level, we aggregate power plant units to power plants for
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Table 2. Power plant characteristics.

Plant Installed Average heat Emissions rate ei Opening/
capacity [MW] efficiency ηi [–] [ton of CO2/MWh] closing datea

Natural gas plants
Pembroke 2269 0.60 0.34 end 2012/–
Peterhead 2134 0.55 0.36 –/March 2014
Staythorpe 1792 0.58 0.34 2010/–
Didcot CCGT 1404 0.55 0.36 –/–
Connahs Quay 1380 0.48 0.42 –/–
West Burton CCGT 1332 0.51 0.40 –/–
Grain CHP 1305 0.56 0.36 –/–
South Humber 1239 0.50 0.40 –/–
Seabank 1169 0.55 0.36 –/–
Saltend South 1164 0.52 0.38 –/–
Teesside 1155 0.45 0.44 –/Feb. 2013
Immingham CHP 1123 0.44 0.46 –/–
Barking 945 0.46 0.44 –/Dec. 2012
Langage 905 0.55 0.37 –/–
Marchwood 898 0.58 0.34 –/–
Killingholme 854 0.48 0.42 –/March 2015
Severn 850 0.54 0.37 –/–
Spalding 830 0.54 0.37 –/–
Rocksavage 800 0.53 0.38 –/–
Sutton Bridge 796 0.52 0.39 –/–
Damhead Creek 783 0.53 0.38 –/–
Coryton 770 0.52 0.38 –/–
Little Barford 740 0.54 0.37 –/–
Rye House 715 0.43 0.46 –/–
Keadby 700 0.47 0.42 –/Feb. 2013
Medway 680 0.53 0.38 –/–
Baglan Bay 520 0.57 0.35 –/–
Deeside 498 0.47 0.42 Dec. 2011/–
Great Yarmouth 420 0.56 0.35 –/–
Shoreham 420 0.54 0.37 –/–
Enfield Energy 408 0.53 0.38 –/–
Corby 401 0.39 0.51 –/Oct. 2015
Cottam CCGT 395 0.55 0.36 -/-
Kings Lynn 325 0.52 0.39 -/March 2012
Peterborough 316 0.37 0.54 -/Dec. 2011
Average natural gas plantb 0.51 0.40

Coal plants
Longannet 2304 0.42 0.81 –/March 2016
Didcot COAL 2108 0.39 0.88 -/March 2013
Cottam 2000 0.39 0.86 –/–
Ratcliffe 2000 0.38 0.89 –/–
West Burton COAL 1972 0.38 0.90 –/–
Fiddlers Ferry 1961 0.37 0.92 –/March 2016
Ferrybridge 1960 0.38 0.89 –/March 2016
Drax COAL 1947 0.38 0.90 –/–
Kingsnorth 1940 0.36 0.94 –/Dec. 2012
Eggborough 1932 0.37 0.92 –/–
Aberthaw 1641 0.41 0.82 –/–
Cockenzie 1200 0.38 0.91 –/March 2013
Rugeley 996 0.39 0.88 –/June 2016
Ironbridge 964 0.35 0.98 –/March 2012
Uskmouth 363 0.33 1.04 –/–
Average coal plantb 0.38 0.89

Notes: Installed capacities, fuel type, and plant opening and closure dates are provided by Variable Pitch
(2016) and Nationalgrid (2011). For data sources and calculations of heat efficiencies and emission rates see
text. a“–” indicates that the plants’ opening or closure date lies outside of the sample period 2009–2016.
bCalculated using installed capacities as weights.
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our analysis.
FUEL PRICES (pfuel

t ).—–Data on daily fuel prices for coal and natural gas are taken
from EIKON (2007). For coal, we use the “ICE CIF ARA Near Month Future”.
Natural gas prices are “NBP Hub 1st day Futures”. All prices are converted to
Euro values using daily exchange rates provided by the ECB (2017).

CARBON PRICES (pCPS
t and pEUA

t ).—–CPS rates are reported by Hirst (2017) and
HM Revenue & Customs (2014) and the EUA price by EEX (2017). Note that the
CPS rate is an annually constant tax in British Pound but reflects exchange rate
variations due to conversion to Euro values.

EMISSIONS FACTORS AND PLANT-SPECIFIC HEAT EFFICIENCIES (θ f and ηi).—–We take
fuel-specific emissions factors from IPCC (2006): 0.34 and 0.20 tons of CO2 per
MWh of thermal energy for coal and natural gas, respectively. CO2 emissions
for each plant i and year y (Eiy) are taken from the official registry of the EUTL
(European Commission, 2016). Dividing total emissions by total generation per
plant, we obtain plant-specific average emissions rates: ei =

∑
y Eiy/(

∑
t yit ). We

then calculate average heat efficiencies for each plant as:

ηi = θ
f /ei .(14)

Table 2 shows these technical characteristics for each plant in the sample. The
average heat efficiency is around 51 percent for natural gas and 38 percent for coal
plants. The emission rates, on the other hand, are significantly higher for coal
(0.89 tCO2/MWh) than for gas (0.40 tCO2/MWh). As we only observe emissions
on an annual level, we can only calculate average heat efficiencies. Therefore,
hourly changes in heat efficiencies due to, e. g., start-up or ramping constraints,
are not considered in our calculations of the emissions impact of the CPS.

AVAILABLE CAPACITY BY PLANT BY HOUR (Kit ).—–Installed capacities (shown in
Table 2) are provided by Variable Pitch (2016) and Nationalgrid (2011). If observed
generation exceeds installed capacity beyond the 95th percentile, we set the value
of installed capacity equal to the 95th percentile of generation.

In addition, data on the maximal output that a plant can provide in a given
hour— accounting for permanent and temporary outages due to maintenance or
other reasons—the so-called “maximum export limits” (MEL), are provided by
ELEXON (2016). Using hourly MEL, we construct a measure of available gener-
ation units for each plant. This implies that the availability of the unit is set to
zero if MEL is zero; it is set to one otherwise. Summing over all units of a power
plant, we obtain a count variable indicating the number of units available per plant,
which we use as a proxy for hourly available capacity.

Not all plants in our data run over the entire sample period from 2009–2016
(see Table 2). For years in our sample period during which a plant has been shut
down or not yet opened, we set the capacity to zero. In line with this, we also do
not predict its counterfactual generation different from zero for these periods, i. e.,
the impact of the CPS will be zero by assumption. This implies that we assume
that plant closures are not caused by the introduction of the CPS. Regarding
this assumption it is, however, important to note that the introduction of the
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CPS in 2013 coincides with the closure of several coal power plants. While the
official reason for the closure is the European “Large Combustion Plant Directive”
(LCPD, see Section II.A), we cannot rule out that the shut-down decision for some
plants may have also been influenced by the announcement of the CPS. Hence, a
fraction of emission reductions due to the LCPD might, in fact, be due to the CPS.
However, as our analysis only captures short-run impacts of the CPS on generation,
we cannot quantify the long-run impacts of the CPS on capacity. However, we know
its direction: While the CPS might have led to a decrease in available coal capacity,
it has for sure not led to an increase. As a consequence, our results represent a
lower bound estimate of the CPS impact.

DEMAND (Dt ).—–We measure Dt as residual demand, defined as the total output
generated by all coal- and natural gas-fired plants using data from ELEXON (2016)
on hourly generation aggregated by fuel type.

TEMPERATURE.—–We use data on daily temperature provided by ECA&D (2016)
to account for time-specific effects on plant-level heat efficiency.

Finally, Table A1 is the Appendix provides descriptive statistics of demand, gen-
eration by technology, and imports on an hourly level.

D. The Empirical Framework.

We now turn to the implementation of our conceptual framework established
in Section I within the context of the UK CPS. First, we use the information
about electricity markets to derive a model of observed outcomes (i.e., generation
of each plant), which is invariant to the policy intervention (i.e., the CPS). Second,
we use available data and ML algorithms to estimate a predictor of outcomes
(i.e., predicted generation). Third, we use the prediction model to estimate the
treatment effect as the difference between predicted generation with treatment (i.e.
observed CPS) and the unobserved counterfactual (i.e., generation without CPS).
Fourth, we present our ex-post calculations to get from the impact on generation
to the impact on emissions and abatement cost. Finally, in the subsequent section,
we discuss the validity of our approach addressing our four main assumptions.

ESTIMATION EQUATION (STEP 1).—–Based on the electricity market model in Sec-
tion II.B, we know that the equilibrium outcome of each plant i depends on demand
Dt , and its own as well as the marginal cost and available capacities Kit of all other
plants. As we do not directly observe plants’ (or generators’) marginal costs and
heat efficiencies (ηit), we exploit the fact that they depend on ambient tempera-
ture and thus additionally include daily mean temperature (tempt). The empirical
analogue of (13) then becomes:

yit = fi
[
rt

(
pcoal
t , pgas

t , θf, pEUA
t , pCPS

t

)
, tempt,Dt,Kit,K(−i)t,Φt

]
+ εit ,(15)

where we include time fixed effects for each hour of the day and each month of
the year (Φt) to account for possible unobserved factors which may impact plant
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output; and the carbon price inclusive ratio of relative fuel prices:

rt :=
pcoal
t + θcoal (pEUA

t + pCPS
t

)
pgas
t + θgas (

pEUA
t + pCPS

t

) .(16)

While we are interested in the impact of the CPS on plants’ output decisions,
there is not sufficient variation in the treatment variable (pCPS

t ) as the CPS changes
only in annual steps. As the CPS directly impacts the fuel costs for coal and
natural gas, we can, however, exploit the variation in carbon-inclusive fuel prices—
instead of including fuel prices (pcoal

t and pgas
t ) and carbon prices (pCPS

t and pEUA
t )

separately. The implicit assumption here is that a change in fuel prices has the
same impact on plants’ marginal cost and, hence, output as a change in the carbon
price (taking into account the emissions factor of the respective fuel θfuel. Moreover,
using rt in (16) nicely concords with the view that it is not the absolute but the
relative fuel prices determining which plants exit or stay in the market.

MACHINE LEARNING ALGORITHM (STEP 2).—–While we know from the theoretical
electricity model in (13) and its empirical counterpart in (15) which variables affects
plants’ output decisions, we do not know the functional form of fi. To obtain an
estimator f̂i of the function fi, we therefore apply ML algorithms, which allow
for flexibel functional forms, to produce reliable out-of-sample predictions of each
plants’ output, yit .

We employ the LASSO11 algorithm (Tibshirani, 1996)—a penalized linear regres-
sion model—and use k-fold cross-validation dividing the sample into eight groups
(often called folds) to train a prediction model f̂ α

∗

i for each plant individually.12

Each prediction model consists of the set of coefficients β̂α∗ and the optimal regu-
larization parameter α∗, which lead to the best possible out-of-sample prediction.13

ESTIMATING THE IMPACT OF THE CPS.—–To simulate plants’ outputs that would
have occurred in the absence of the UK carbon tax, we set the CPS treatment
variable to zero while leaving all other data unchanged. The counterfactual “no-
policy” level of the fuel price ratio is given by:

r t = rt
���
pCPS
t =0

(
pcoal
t , pgas

t , θ f , pEUA
t , pCPS

t

)
.(17)

Based on the estimator in equation (8) detailed in Section I, the impact of the
CPS on the output decision of each plant i in each hour t can then be calculated

11We also used other algorithms such as random forest. However, the LASSO, an algorithm which is
linear in coefficients, lead to the most convincing simulation of the electricity market as a whole: While
other algorithms failed at implicitly fulfilling the market clearing condition (see equation (12)), the LASSO
algorithm was able to meet this condition—although it was not explicitly modelled (see also II.E).

12The LASSO algorithm requires a pre-defined set of input features. In addition to the variables which
appear on the RHS of (15), we include (i) interaction terms of all these variables with electricity demand,
the coal-to-gas price ratio, and temperature, and (ii) second order polynomials of these three variables.

13Appendix B assesses the out-of-sample prediction performance of the ML algorithm as compared
to standard regression analysis (OLS) for our data set. We find that the ML (i.e, LASSO) algorithm
outperforms the OLS model. This supports the broader insight that ML techniques can be beneficially
employed to use prediction to construct an unobserved counterfactual.
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as:

(18) δ̂CPS
it = ŷwith CPS

it − ŷwithout CPS
it ,

where

ŷwith CPS
it = f̂ α∗i

(
rt, tempt,Dt,Kit,K(−i)t,Φit

)
(19)

ŷwithout CPS
it = f̂ α∗i

(
rt = r t, tempt,Dt,Kit,K(−i)t,Φit

)
.(20)

As a closed-form solution of standard errors of the prediction is not available for
the LASSO regression (see, for example, Tibshirani, 1996), we use bootstrapping
to calculate standard errors. We generate a bootstrap sample with the same length
as the original data by using random drawings with replacement. We individually
bootstrap by year to get the same amount of values from each year, thus ensuring
that all years are equally represented in each sample so as to not violate Assumption
4. We use bootstrapping (with sample size N=1000) to estimate the standard errors
of δ̂CPS

it (Venables and Ripley, 2002).
MEASURING CO2 EMISSIONS AND ABATEMENT COST.—–To calculate electricity-sector

emissions (from combustion of coal and natural gas in electricity generation) at
time t, we aggregate CO2 emissions from all plants operating in the market:

Ewithout CPS
t :=

∑
i

ei ŷwithout CPS
it︸            ︷︷            ︸
Plant-level
emissions

where the emissions of plant i are obtained by multiplying output by the plant-
specific emissions rate ei (see Table 2). Given the estimator for the CPS impact
on plant-level output (δ̂CPS

it ), we can calculate the change in electricity-sector emis-
sions impact due to the CPS as follows:

∆Et :=
∑
i

ei δ̂CPS
it .︸   ︷︷   ︸

Policy-induced change in
emissions of plant i (=: ∆Eit )

(21)

Next to its impact on generation and consequently emissions, the CPS also leads
to a change in aggregate production costs. For our ex-post calculations, we assume
marginal cost to be linear in fuel and carbon prices. Specifically, based on average
heat efficiencies (given by equation (14) and shown in Table 2) marginal cost are
calculated as

cit (·) =
1
ηit

(
pf
t + θ

f (pEUA
t + pCPS

t )

)
.(22)

Aggregate production costs are obtained by summing over marginal generation
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costs of all plants in the market at time t:

Ψt =
∑
i

ŷwith CPS
it cit (·) − ŷwithout CPS

it cit (·)
���
pCPS
t =0

.

Using the definition of the treatment effect from equation (18) and plant-specific
heat efficiency from equation (14), this can be rewritten as follows:

Ψt =
∑
i

δ̂CPS
it

1
ηit

(
pf
t + θ

f pEUA
t

)
︸                              ︷︷                              ︸

=:Tt
Technical abatement

cost

+
∑
i

pCPS
t ei ŷwith CPS

it︸                     ︷︷                     ︸
=:Rt

Tax payments
due to CPS

.(23)

Ψt can thus be decomposed into two parts. T reflects the technical abatement costs
for the supply side of the market as the CPS affects plant output by re-ordering
the supply or merit order curve. In other words, the CPS leads to an increase in
(expensive) natural gas, and a decrease in (cheap) coal generation. This results in
higher total production cost for the same amount of electricity generation.

R takes into account the costs incurred due to the CPS tax paid on each unit
of generated emissions. While Ψ reflects the costs borne by the supply side of the
electricity market, this decomposition is useful as the tax payments by electricity
firms are typically recycled in a way which does not destroy the value of R. If, for
example, the tax revenues from the CPS are fully rebated to electricity consumers,
the costs of the CPS aggregated over both sides of the markets amount to T only.

E. Scrutinizing the Validity of the Approach: Assumptions 1–5

As established in Section I.B, the validity of our approach to estimate the treat-
ment effect of the policy intervention as the simple difference between predicted
outcomes with and without the policy intervention relies on the existence of a
causal model, fi, and a set of assumptions. Before scrutinizing the assumptions,
two things are worth noting:

First, the function fi is independent of the treatment, i. e., the level of the carbon
price, as we derive it from the generally valid electricity market model in Section
II.B.

Second, by modeling output of one plant depending on the characteristics of all
other plants in the market, we do not model a single plants’ output decision, but
rather the decision of the market maker which plants to use. This implies that
our output function is independent of the output function of the other plants and,
therefore, the stable unit treatment assumption (SUTVA) is fulfilled. If we would
model plant’s output depending only on its own marginal cost, i. e., the unit’s bid
function, then the output of one plant would depend on the treatment applied to
other plants as it changes marginal cost and, thus, the ordering of the plants in
the supply function (see Imbens and Rubin, 2015, for a further discussion of the
SUTVA assumption and unit of analysis).
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We now turn to the discussion on whether each of the Assumptions 1–5 is met
within the specific context of our empirical application. Given that for the discus-
sion of Assumptions 2 and 3 we already need to look at some results, we discuss
these assumptions last, right before turing to the results section.

INDEPENDENCE OF CONTROL AND TREATMENT VARIABLES (ASSUMPTION 1)—–The
validity of our approach to calculate the treatment effect relies on the independence
of control and treatment variables as discussed in Section I.B. We believe that
these requirements are reasonable for the following reasons: (i) the CPS level is
determined exogenously at a fixed rate two years in advance; (ii) the EUA carbon
price is determined by EU ETS market of which the UK electricity sector only
covers a negligibly small part; (iii) the market share of UK’s electricity firms on
international fuel markets is not large enough to affect fuel prices; (iv) the short-
run nature of our analysis means that electricity demand does not react to hourly
wholesale electricity prices which may be impacted by a carbon tax; (v) likewise,
installed capacities cannot be adjusted in the short run and are thus not impacted
by a carbon price; and (vi) exogenous weather processes determine temperature
and are clearly independent of a carbon tax policy.

POSITIVITY OR CO-VARIATE OVERLAP (ASSUMPTION 4)—–To ensure a high prediction
quality of the counterfactual simulation, the positivity assumption requires that the
counterfactual fuel price ratio r it lies within the range of observed fuel price ratios
rt conditional on observed control variables. Apart from marginal cost, which are
expressed through the fuel price ratio, residual demand is the main control variable
determining which plant enters the market. The left panel of Figure 3 shows the
joint distribution of the observed fuel price ratio and residual demand over the
full sample period 2009–2016. The right panel depicts the joint distribution of
the counterfactual fuel price ratio and residual demand for the period after the
CPS became effective, i.e. from April 2013 until the end of 2016. Comparing both
panels, one can see that the imposed counterfactual ratios are well covered by the
observed distribution—i.e., only a small fraction of values with a fuel price ratio
exceeding a value of 2.5 fall outside the observed sample distribution. We take this
as strong evidence that Assumption 4 is satisfied.

VARIATION IN TREATMENT VARIABLE (ASSUMPTION 5)—–To train the model and es-
timate a valid predictor, sufficient variation in treatment and control variables is
necessary. While the CPS only varies on an annual level, the distribution of the
carbon price inclusive fuel price ratio depicted in Figure 3 shows that there is
substantial variation in our modified treatment variable over the sample period.

PREDICTION ERROR INDEPENDENT OF TREATMENT (ASSUMPTION 3)—–As we do not
observe the no policy counterfactual, we cannot measure the prediction error under
no treatment. We can, however, analyze how the observed prediction error evolves
over time. Figure 4 uses the the largest coal and gas plants to illustrate our method.
Comparing the observed (hollow dots) to the predicted (blue dots) generation
under observed covariates, we find that our model predicts observed values rather
well. Red dots represent predicted counterfactual generation without the CPS. Our
estimator derives the treatment effect as the difference between the predicted value
under observed and counterfactual covariates. This can be seen in the figure as
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(a) Observed rt over full sample (b) Counterfactual r t over CPS period

Figure 3. Joint distribution of observed and counterfactual coal-to-gas fuel price ratio (rt and r t , respec-
tively) and residual demand

the distance between blue and red dots. It becomes evident, that the introduction
of the CPS led to a decrease in coal and an increase in gas generation.

CONDITIONAL INDEPENDENCE OF UNOBSERVED CONTROLS (ASSUMPTION 2)—–As one
does not know which unobserved variables may influence plants’ output decisions,
it is not possible to directly test Assumption 2. By including a number of different
fixed-effects specifications, we can, however, test the robustness of our model.

Table 3 reports the impact of the CPS on coal and gas power plant generation
from four different model specifications. M1 includes monthly and hourly fixed
effects while M2-M4 exclude either monthly or hourly dummies or both.14 Our
finding that the results are robust across model specifications M1-M4 suggests
that there do not seem to be significant unobserved variables, with systematic
variation at the monthly and/or hourly level, that impact plants’ output decisions.
We take this as evidence that Assumption 2 is plausibly satisfied in the specific
context of our application.

Another important finding of the results shown in Table 3 is, that in all specifi-
cations the total net impact of the CPS on generation, i. e., the sum of the impacts
on coal and natural gas, does not statistically differ from zero at a 5 % significance
level. This implies that the increase in natural gas generation is equal to the de-
crease in coal generation. This fact is especially noteworthy, as we estimate each
plant’s output decision separately and do not explicitly impose a structural con-
straint ensuring market clearing—as depicted by equation (12) in the theoretical
model. It is thus not a priori clear that the net impact of the CPS on coal and
natural gas is zero. As our empirical model, however, implicitly makes use of all
determinants of wholesale market supply and demand, we find that that predicted

14Note that we estimate an individual predictor for the generation of each plant rendering it impossible
to include unit-specific dummies.
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Figure 4. Predicted versus observed versus counterfactual values for coal plant (upper row) and gas plant
(lower row).

Notes: Cottam and Pembroke are the largest coal and gas plants, respectively, which have been in the
market during the whole treatment period. In 2013, the CPS was 5.85e /t, in 2014 it was 12.17e /t, in
2015 and 2016, 24.70 and 21.60e /t respectively.
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Table 3. Assessing unobserved heterogeneity: impact of the UK carbon tax (CPS) on aggregated power
plant output by technology category for different model specifications.

Model specification

M1 M2 M3 M4

Monthly fixed effects yes no yes no
Hourly fixed effects yes no no yes

Coal
TWh -46.29 -42.78 -43.17 -42.72

(1.69) (1.01) (1.71) (1.20)
% of total generationa 14.7 13.6 13.7 13.6

Natural gas
TWh 45.55 45.00 46.01 45.23

(1.06) (0.92) (1.07) (0.75)
% of total generationa 15.0 14.9 15.2 14.9

Total (TWh) -0.75 2.23 2.84 2.51
(2.00) (1.37) (2.02) (1.42)

Notes: Plant-level impacts δ̂CPS
it based on equation (18). aRefers to situation without the CPS. Boot-

strapped standard errors are shown in parentheses.
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Figure 5. Monthly impacts of the UK carbon tax (CPS) on electricity generation

Notes: Shaded areas represent 95 % confidence intervals (based on bootstrapped standard errors). Values
shown refer to estimated plant-level impacts δ̂CPS

it , based on model specification M1 and equation (18),
aggregated by technology category and month.

supply matches demand—even though we do not explicitly require market balance.
This is not only true for the whole sample period, but can also be shown by the
symmetric impacts on coal and natural gas generation on a monthly level (see Fig-
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ure 5). This implicit market clearing is another evidence, that we are not missing
out on important unobserved variables.

Given that under specification M1, which includes hourly and monthly fixed
effects, the net impact on coal and gas generation is closest to zero, this is our
preferred specification for subsequent analysis.

III. Results

This section presents our main results. We first report on the aggregated impacts
of the CPS on output as well as the emissions and abatement cost impacts. We
then scrutinizing the drivers for the heterogeneous impacts over time. Finally, we
investigate in detail how both, the environmental effectiveness and abatement costs
of the CPS, depend on the prevailing relative market prices for fossil fuels.

A. Market impacts of the UK carbon tax

OUTPUT BY TECHNOLOGY CATEGORY.—–Table 4 shows the impact of the CPS on
coal and gas generation for each year and the total, i.e. cumulative, impact since
its introduction in April 2013 until the end of 2016. We find that, in aggregate
over all fossil-based power plants and until the end of 2016, the CPS caused a
reduction in the output from coal-fired plants of 46.29 TWh and an increase from
gas-fired plants of 45.55 TWh.15 Relative to a situation without the CPS, these
changes correspond to a fuel switch from coal to natural gas of around 15 percent.
Plant-specific generation impacts of the CPS are shown in Appendix C.C1.

The impact of the CPS on generation varies substantially over time. The fuel
switch was initially low at an absolute level of around 4 TWh in the 2013 period
and then increased over the years with the highest value of around 22 TWh in 2015.
The absolute impacts for both natural gas and coal are much larger in the 2015 than
in the 2016 period (even if we control for the fact that the 2016 period comprises
only nine months). In relative terms, coal experienced the largest decrease in the
2016 period. Adding to the heterogeneity in the annually aggregated impacts by
CPS period, Figure 5 shows that there is also considerable variation over time in
the CPS-induced impacts on monthly output of coal- and gas-fired power plants.

EMISSIONS AND ABATEMENT COSTS.—–Table 5 reports on the effects of the CPS on
electricity-sector CO2 emissions and abatement cost. We find that in the period
2013–2016, the CPS has reduced emissions by 26.1 million tons—which corresponds
to a 6.4 percent reductions of emissions as compared to a situation without a CPS.
The highest CPS-induced abatement occurred in the 2015 period with 11.6 million
tons or a reduction of 11.6 percent of emissions in that period.

Applying our measure of technical abatement costs T from equation (23), the
CPS has reduced one ton of electricity-sector CO2 emissions at an average cost of
e 18.2. There is, however, substantial variation in the average technical cost over
time, ranging from e 2.7 in 2015 to e 47.5 in 2013 per ton abated CO2.

15Note that in none of the CPS periods the net impact on the sum of coal and natural gas does
statistically differ from zero at a 5 % significance level.
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Table 4. Impacts of the UK carbon tax (CPS) on aggregated power plant output by fuel type.

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [e per ton of CO2] 5.85 12.17 24.70 21.60 –

Output from coal-fired plants
TWh -4.17 -9.26 -21.92 -10.94 -46.29

(0.27) (0.57) (0.86) (0.21) (1.69)
% of total generationa -3.7 -9.8 -27.0 -43.6 -14.7

Output from gas-fired plants
TWh 4.27 9.37 21.19 10.72 45.55

(0.10) (0.23) (0.57) (0.40) (1.06)
% of total generationa 6.1 12.1 29.7 12.8 15.0

Total [TWh] 0.10 0.11 -0.73 -0.22 -0.75
(0.29) (0.62) (1.03) (0.45) (2.00)

Notes: As the CPS is adjusted in April of every year, all reported variables refer to the period from April
to March of the subsequent year. As data is available until December 2016, the 2016 period comprises
only nine months. Values shown refer to estimated plant-level impacts δ̂CPS

it , based on model specification
M1 and equation (18), aggregated by technology category. Bootstrapped standard errors are shown in
parentheses. aRefers to situation without the CPS.

TAX REVENUE.—–Table 5 also reports the tax revenues raised with the CPS. Since
the introduction of the CPS until the end of 2016, the British government received
around e 5.2 billion in tax revenue from the CPS policy. Again, there is temporal
heterogeneity in the magnitude of tax revenues collected: the highest tax revenues
(around e 2 billion) accrued in 2015 when both, emissions and the CPS level, were
high; already in the subsequent period, the CPS tax revenue dropped significantly
due to the fact that the remaining CO2 emission in the market were considerably
lower (controlling for the fact that the 2016 period comprises only nine months).

B. Drivers of the heterogeneous market impacts: An overview

Understanding the drivers and market conditions which determine the effective-
ness of a tax policy is crucial for the design of environmental regulation. It is thus
important to ask: What explains the heterogeneous impacts over time which, in
turn, determine the effectiveness and abatement cost of the UK carbon tax?

In the short-run, the CPS leads to carbon abatement if it induces a replacement
of coal-fired by natural gas-fired electricity generation. To this end, the CPS needs
to fill the gap between coal and natural gas prices to induce a fuel switch. This can
be favored by two main factors: First, a higher level of the CPS. Second, a higher
coal-to-gas price ratio, i. e., a smaller the gap between coal and gas prices. A higher
fuel-price ratio has, however, two opposing effects. On the one hand, abatement
becomes cheaper. On the other, gas-fired generation becomes cheaper even in the
absence of carbon policy. It thus becomes more likely that gas plants are already
dispatched without any carbon policy and, therefore, the potential for abatement,
i. e., the substitution of coal plants, decreases.

To trace out in detail the impacts of these drivers and the interactions between



28

Table 5. Impacts of the UK carbon tax (CPS) on electricity-sector emissions and abatement cost

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [e/t] 5.85 12.17 24.70 21.60 –

Emissions without CPS [Mt] 125.8 112.0 98.0 71.3 407.1

CO2 abatement
∆Et [Mt] 2.1 4.7 11.6 7.6 26.1

(0.25) (0.53) (0.81) (0.24) (1.60)
% of total emissionsa 1.7 4.2 11.9 10.7 6.4

Abatement cost Ψt = Tt + Rt

Technical cost Tt [mio. e] 101.1 129.1 195.1 20.5 445.0
(9.2) (18.4) (29.1) (16.6) (58.7)

Avg. tech. cost Tt /∆Et [e/t] 47.5 27.2 16.8 2.7 18.2
(12.5) (8.7) (4.0) (2.3) (4.0)

Tax payments Rt [mio. e] 725.7 1309.6 2129.4 1372.8 5194.3

Notes: Values shown refer to estimated plant-level impacts δ̂CPS
it , based on model specification M1 and

equation (18), aggregated by period. As the CPS is adjusted in April of every year, all reported variables
refer to the period from April to March of the subsequent year. As data is available until December 2016,
we can only estimate the impacts of the CPS for a nine month period. To ensure comparability with
previous years, we scale model values for 2016 to a 12-month basis. Bootstrapped standard errors are
shown in parentheses. a Relative to a situation without CPS.

them, we perform simulations with our ML-trained structural model. Specifically,
Figure 6 shows the dependency of hourly abatement (upper panel), total hourly
abatement cost (middle panel) and average abatement cost per ton of CO2 (lower
panel) with respect to the coal-to-gas price ratio for four different levels of the CPS
(5, 10, 20, and 30 e per ton of CO2).16

The following insights emerge regarding the two main drivers of heterogeneous
market impacts:

LEVEL OF CPS (pCPS
t ).—–We find that for a given coal-to-gas price ratio, the highest

CPS level brings about an around six times higher hourly abatement compared to
the lowest CPS level. Intuitively, the higher the CPS level, the larger is the increase
in the fuel price ratio (for given fuel prices) and, thus, the larger is the impact on
the marginal costs and output of fossil-based power plants. Also total technical
abatement cost are higher in the case of a high CPS, reflecting two effects. On the
one hand, higher abatement naturally implies higher cost. On the other hand, a
higher CPS implies higher marginal abatement cost as more coal plants need to
be replaced. For CPS levels below 20 e/t CO2 average abatement cost are nearly
constant in the fuel price ratio indicating that the difference in total cost is mainly
driven by larger abatement. For a level of 30 e/t CO2 the increase in average cost
becomes larger indicating a steeper increase in the MAC curve.

COAL-TO-GAS PRICE RATIO (rt ).—–Next to the CPS level, the relative fuel price
of coal to natural gas (shown on the x-axis) is a very important driver of CPS
impacts on emissions and abatement cost. Abatement shows an inverted U-shaped

16Curves are fitted using a least square fit. For abatement (total cost and average cost), a second order
polynom (linear function) shows the best fit.
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Figure 6. Impact of CPS level (pCPS
t ) and fuel price ratio (rt ) on hourly abatement (first row), total

abatement cost (middle row), and average abatement cost (bottom row).

Notes: Legend refers to CPS levels in e /t.
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pattern peaking at a coal-to-gas price ratio of rt ≈ 0.6. This is an indication of
the two opposing effects of the fuel price ratio. Until a ratio of 0.6, MAC are
decreasing and, therefore, abatement increases. Afterwards gas-fired generation
becomes favorable even in the absence of the CPS and, thus, the potential for a
fuel switch, i. e., abatement, is decreasing. Abatement costs monotonically decrease
with an increasing fuel price up to the point where rt is between 0.6 and 0.8. These
numbers are no coincidence: Given the average heat efficiencies of all plants in our
sample (see Table 2) and the definition of marginal costs from equation (22), the
most efficient gas plant replaces the least efficient coal plant at a fuel price ratio
of rt = 0.55. This implies that starting from this ratio, coal and gas prices are
roughly equal up to a fuel price ratio of rt = 0.88, where the most efficient gas
plant replaces the most efficient coal plant.17 In the next section, we analyze the
impact of the fuel price ratio on abatement and abatement cost in more detail.

C. Effectiveness and cost of the carbon tax: zooming in on the role of relative fuel prices

The effectiveness and cost of the CPS to reduce CO2 emissions majorly depend
on the coal-to-gas price ratio rt which is determined by prevailing market prices
for fossil fuels prior to the introduction of the carbon tax. This section further
scrutinizes the impacts of the CPS through the fuel price channel on the quantities
and costs abated.

Intuitively, an increase in rt affects the abatement behavior of power plants in
two ways. First, given a situation in which coal is cheaper than gas, the carbon
price necessary to equalize the after-tax costs of coal and gas is the smaller, the
cheaper natural gas becomes relative to coal, i. e., the higher rt . Hence, marginal
abatement costs (MAC)—defined as the minimum carbon price which induces a
switch between a coal and a natural gas plant—also decrease in rt . We refer to this
as the “MAC effect”. Second, the potential to abate CO2 emissions diminishes as rt
increases. Intuitively, as natural gas gets cheaper relative to coal (i.e., rt increases),
gas-fired plants replace coal plants even without a carbon tax policy, thus implying
that the abatement potential (AP) of a carbon price to lower emissions through
switching from coal to natural gas—defined as the difference in emissions under the
observed market dispatch and the hypothetical emissions in a market situation in
which all available gas-fired power plants would be dispatched before coal plants are
used—is limited. We refer to this as the “AP effect”. Note that these two effects
work in opposite directions in terms of carbon abatement: as rt increases, the
“MAC effect” implies that carbon abatement becomes cheaper, hence increasing
abatement, while abatement decreases due to the “AP effect”.

Figure 7 shows the impact of the (carbon tax-exclusive) fuel price ratio on MAC
and the AP.18 First, MAC are decreasing in rt as switching from coal to gas plants

17The switch is complete at a level of rt > 1 where the least efficient gas plant replaces the most efficient
coal plant.

18We calculate the MAC and AP for each hour based on observed fuel prices, demand, and heat
efficiencies for each plant (see Table 2). MAC are defined as the lowest carbon price inducing a switch
between a coal and gas-fired plant. For the AP, we compute a hypothetical market dispatch with all
gas-fired plants dispatched first. AP is then defined as the emissions under the realized dispatch under
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becomes cheaper when the price difference decreases. Also, as natural gas becomes
relatively cheaper, the AP tends to diminish (the dispersion in the AP for a given
level of rt is driven by the considerable variation in electricity demand over the day
and the year).

Second, we can identify three distinct regions where the effectiveness and costs
of the carbon tax differ systematically depending on the threshold values for rt
where the most efficient gas plant replaces the least (most) efficient coal plant,
corresponding to the left and right vertical lines in Figure 7, respectively:

“Low rt” (high MAC, high AP).—–Coal plants are much cheaper than natural
gas plants, implying that the AP is at its maximum as all coal plants are still in
the market and can potentially be replaced. The MAC are initially high for lower
levels of rt as the gap between coal and gas prices that has to be overcome by a
potential tax in order to induce a fuel switch is high. The MAC then decrease as
the coal price increases relative to the gas price.

“Intermediate rt” (low MAC, high AP).—–When rt is slightly above the threshold
level of 0.55, MAC are low and the AP is high. As rt increases, gas plants gradually
begin to substitute coal plants, implying that the AP decreases. As the production
cost of coal and gas plants get closer to one another, a low carbon tax is already
sufficient to induce abatement, implying that MAC are low and further decrease.

“High rt” (low MAC, near-zero AP).—–At a fuel price ratio of 0.88 the most
efficient gas plant replaces the most efficient coal plant even in the absence of the
CPS. Thus, the natural gas plants becomes the first plant in the merit order curve.
As a consequence, gas plants replace nearly all coal capacity in the market, implying
that the AP is exhausted. As most gas plants are cheaper than coal-fired plants,
MAC are virtually zero. At a fuel price ratio of 1.12 the most inefficient gas plant
replaces the most efficient coal plant. As the all gas plants are dispatched before
coal, AP is completely exhausted and (short-run) MAC are no longer defined.

Equipped with the intuition from Figure 7, we can finally examine the heteroge-
neous effects of the CPS in terms of carbon abatement and cost. Figure 8 shows
the relation between rt , daily abatement, and average abatement cost as estimated
by our ML-trained model. In 2013, the coal-to-gas price ratio was low (stars in
the region “Low rt”). Albeit the AP was high, the CPS was too low to trigger
substantial abatement due to high MAC. Average abatement cost are rather high
again due to the high MAC.

In 2014, coal prices increased relative to gas prices (i. e., circles in the regions
“Low rt” and “Intermediate rt”) leading to a decrease of MAC. Moreover, the CPS
increased. Abatement was therefore higher and average abatement cost decreased.

The largest abatement can be found at a fuel price ratio around 0.55 and a high
CPS level, i. e., diamonds. This corresponds to the situation in the year 2015 with
low MAC but a high AP. Compared to 2014, the ratio was very similar but due to
a higher CPS abatement was higher. Finally, the situation in 2016 is represented
by the diamonds in the middle and right part. In this year, both the CPS and rt
were high, i. e., the AP was almost entirely exhausted, implying a lower abatement

fuel prices without the CPS and the hypothetical gas dispatch.
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Figure 7. Relation between fuel price ratio rt , hourly marginal abatement cost (MAC), and hourly
abatement potential (AP)

compared to 2015 but at very low cost. Taken together, Figure 8 clearly shows
that the effectiveness of the CPS varied considerably over time depending on the
prevailing relative market prices of fossil fuels.

IV. Concluding Remarks

While economists see carbon pricing (through a tax or an emissions trading
system) as the most important regulatory measure for mitigating climate change,
surprisingly little is known about its performance in the electricity sector from
an ex-post perspective. Causal inference of the market impacts of a broad-based
carbon tax, i.e. one which affects all units in the market, is difficult as typically no
suitable control group of a counterfactual situation exists.

Against this background, this paper has made two contributions. First, we
have developed and implemented a new approach which combines economic theory
and machine learning (ML) techniques to establish causal inference of a policy
intervention in settings with high-frequency data when no control group exists.
Specifically, we exploit economic theory of electricity market dispatch and peak-
load pricing to select the variables of a causal model which is then trained using
ML to obtain an empirical model for out-of-sample prediction at the firm level.
We obtain the treatment effect for each firm as the difference between predicted
outcomes with and without policy.

The developed framework rests on several conditions to be applicable. Specif-
ically, we deal with situations in which the underlying structural causal model
is constant over time. This allows us to use the full sample to train a predictor
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Figure 8. Relation between fuel price ratio rt , daily abatement, and daily abatement cost

Notes: The color code refers to daily abatement. The marker form represents the level of the CPS
corresponding to different years (see also Table 5): the stars refer to 2013 with a a CPS of 6e/t CO2, the
circles refer to 2014 with a CPS of ≈12e/t CO2, and the diamonds refer to 2015 and 2016 with a CPS in
the range of 22–25e/t CO2.

function ensuring a high prediction quality. Also, the treatment variable has to be
variable enough to allow to identify its causal impact in the predictor function. If
treatment is not variable enough, as it is the case for the CPS level in our applica-
tion, one needs to exploit the variation of a control variable with the same causal
impact as the treatment variable, in our case relative fuel prices. Furthermore, ML
models are local approximations of true functions given the observed sample. This
implies that one has to take care that variables used for predictions lie within the
support of the sample in order to avoid increasing prediction errors.

Second, employing our new approach, this paper has evaluated the environmental
and cost effectiveness of the UK Carbon Price Support—a carbon levy imposed on
all fossil-based power plants in the electricity market. To the best of our knowledge,
this is the first paper in economics to incorporate ML methods to conduct causal
inference of carbon pricing. Our analysis provides empirical evidence for the view
that a carbon tax is an effective regulatory instrument to reduce CO2 emissions:
the CPS induced a substitution away from “dirty” coal to cleaner natural gas-fired
power plants—replacing about 15 percent or 46 TWh of coal-based generation and
reducing electricity sector emissions by 6.2 percent between 2013 and 2016. Over
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that period, we find that the abatement of one ton of CO2 incurred additional
total costs of e 18.2 for consumers and fossil-based electricity producers. We used
simulations with the ML-trained model to identify the empirical conditions which
influence the environmental and cost effectiveness of the carbon tax. We find that
the ratio of carbon tax-exclusive prices for coal and natural gas is by far the most
important driver.

Some limitations of our analysis should be kept in mind. First, we focus on
analyzing the short-run market impacts of the CPS. We thus abstract from po-
tential effects of the CPS on energy conservation, i. e., demand reductions, and
investments in low-carbon electricity production capacity. Similarly, we do not
estimate the impact of the CPS on plant closure—which we assumed to be mainly
attributed to the European “Large Combustion Plant Directive”. To the extent
that such effects increase carbon abatement for a given tax level, our analysis is
best viewed as providing a minimum estimate of the environmental effectiveness
of the CPS.

Second, by increasing domestic wholesale market prices relative to the costs of
electricity imports, the CPS may stimulated imports. This also suggests that our
estimate of the domestic CO2 emissions impacts caused by the CPS should be
interpreted as providing a lower bound.

Notwithstanding these considerations, our analysis has important implications
for the design of carbon pricing policies to mitigate climate change: a carbon tax
can but does not necessarily have to be an effective instrument. Its effectiveness in
terms of both quantity reductions of CO2 emissions and economic costs significantly
depends on the prevailing fuel market conditions.
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Pettersson, Fredrik, Patrik Söderholm, and Robert Lundmark. 2012. “Fuel switching and climate
and energy policies in the European power generation sector: A generalized Leontief model.” Energy
Economics, 34(4): 1064–1073.

Rausch, Sebastian, and Matthew Mowers. 2014. “Distributional and efficiency impacts of clean and
renewable energy standards for electricity.” Resource and Energy Economics, 36(2): 556 – 585.

Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized
Studies.” Journal of Educational Psychology, 66(5): 688–701.

Rutherford, Thomas F. 1995. “Extension of {GAMS} for complementarity problems arising in applied
economic analysis.” Journal of Economic Dynamics and Control, 19(8): 1299 – 1324.

Samii, Cyrus, Laura Paler, and Sarah Zukerman Daly. 2016. “Retrospective Causal Inference
with Machine Learning Ensemles: An Application to Anti-recidivism Policies in Colombia.” Political
Analysis, 24: 434–456.

Tavoni, Massimo, Elmar Kriegler, Keywan Riahi, Detlef P. van Vuuren, Tino Aboumahboub,
Alex Bowen, Katherine Calvin, Emanuele Campiglio, Tom Kober, Jessica Jewell, Gunnar
Luderer, Giacomo Marangoni, David McCollum, Mariesse van Sluisveld, Anne Zimmer,
and Bob van der Zwaan. 2014. “Post-2020 climate agreements in the major economies assessed in
the light of global models.” Nature Climate Change, 5: 119–126.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society. Series B (Methodological), 58: 267–288.

Variable Pitch. 2016. “Variable Pitch. www.variablepitch.co.uk.”
Varian, Hal R. 2014. “Big data: New tricks for econometrics.” The Journal of Economic Perspectives,

28(2): 3–27.
Varian, Hal R. 2016. “Causal inference in economics and marketing.” Proceedings of the National

Academy of Sciences, 113(27): 7310–7315.
Venables, W.N., and B.D. Ripley. 2002. Modern Applied Statistics with S - Fourth Edition.
Weyant, John, Brigitte Knopf, Enrica De Cian, Ilkka Keppo, and Detlef P. van Vuuren.

2013. “Introduction to the EMF28 Study on Scenarios for Transforming the European Energy System.”
Climate Change Economics, 4(1): 1–3.

World Bank. 2018. “State and Trends of Carbon Pricing 2018.” World Bank, Washington, DC. Doi:
10.1596/978-1-4648-1292-7.

www.variablepitch.co.uk


38

Appendix A: Additional data

Table A1. Descriptive statistics: annual means and standard deviations of observed hourly electricity
demand, generation, and imports by technology category.

2009 2010 2011 2012 2013 2014 2015 2016

Residual demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54
(6.51) (6.58) (6.63) (6.77) (6.93) (6.23) (6.36) (6.43)

Total demand 36.55 37.27 35.79 35.88 35.89 34.56 34.21 33.70
(7.76) (8.15) (7.68) (7.52) (7.74) (7.40) (7.47) (7.74)

Gas 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23
(3.01) (3.07) (3.79) (4.16) (5.12) (4.87) (4.43) (4.75)

Coal 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27
(5.80) (5.29) (5.14) (4.04) (3.18) (4.10) (3.45) (2.88)

Nuclear 7.41 6.67 7.39 7.51 7.53 6.82 7.50 7.60
(1.03) (1.12) (1.13) (0.83) (0.97) (1.04) (0.61) (0.66)

Hydro 0.41 0.24 0.42 0.37 0.33 0.45 0.47 0.38
(0.22) (0.17) (0.21) (0.22) (0.24) (0.27) (0.26) (0.26)

PSP -0.13 -0.11 -0.09 -0.11 -0.11 -0.11 -0.10 -0.12
(1.14) (1.01) (0.95) (0.96) (0.92) (0.93) (0.90) (0.96)

Other 0.00 0.00 0.00 0.24 0.44 0.85 1.29 1.62
(0.00) (0.00) (0.00) (0.25) (0.34) (0.26) (0.53) (0.46)

Wind 1.02 1.16 1.74 2.00 2.80 3.24 3.70 3.63
(0.66) (0.82) (1.15) (1.43) (1.79) (2.17) (2.26) (3.08)

Solar 0.00 0.00 0.02 0.14 0.35 0.57 0.96 1.11
(0.00) (0.00) (0.03) (0.21) (0.56) (0.85) (1.48) (1.64)

Imports 0.15 0.06 0.54 1.13 1.49 2.22 2.37 2.03
(1.28) (1.44) (1.17) (1.13) (0.86) (0.51) (0.65) (1.20)

Notes: Standard deviations in parentheses. Data for generation by fuel type is based on ELEXON (2016).
Nationalgrid (2016) provides data for final demand and embedded wind and solar generation.

Table A2. Descriptive statistics: installed annual generation capacities by technology category [GW].

2009 2010 2011 2012 2013 2014 2015 2016

Gas 20.9 23.0 23.4 25.0 24.2 24.1 23.7 23.6
Coal 25.3 25.3 25.3 24.5 19.9 19.1 19.1 15.3
Hydro 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Nuclear 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2
OCGT 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3
Oil 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
Other 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
PSP 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
Imports 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0

Notes: Installed capacities are provided by Variable Pitch (2016) and Nationalgrid (2011). Plant char-
acteristics of individual coal and gas plants, i. e., heat efficiencies, emission rates, installed capacities as
opening and closure dates are shown in Table 2.
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Appendix B: Machine Learning (LASSO) Algorithm versus OLS

This section compares the out-of-sample performance of the LASSO algorithm
versus a standard linear OLS regression model. The comparison of both models is
based on the same input variables (and data) as specified in equation (15).

To assess model performance, we proceed in three steps. First, we split out data
into eight different pairs of train- and hold-out samples, i.e. each time we use all
but one year to train the model and use the remaining year as a hold-out set.
Consequently, each of the years 2009 to 2016 is used once as a hold-out set while
the rest of the sample is used to train the model. Second, we use each train set
to build the models which predict hourly generation yit on a set of input features
xit and zt for each i ∈ I, separately. In this step, we perform cross-validation to
tune the regularization parameter α. The final step compares different types of
models with respect to their in-sample and out-of-sample performance. We can
assess for each plant the predictive performance by hold-out year and model type.
We use the coefficient of determination—defined as 1−

∑
i(yi − ŷi)

2/(
∑

i(yi − yi)
2)—

as the score function to evaluate model performance. A test score of 1.0 indicates
that the model perfectly predicts the observed data. Note that, in contrast to the
commonly reported R2, the test score can be negative because the model can be
arbitrarily poor .

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Test score

Coal

Gas

Linear Regression LASSO

Figure B1. Comparison of the distribution of plant-specific performance scores by fuel type for LASSO
vs. OLS models.

Figure B1 compares the test scores of the LASSO and OLS algorithms assessing
the prediction of the hold-out set. It is evident that the LASSO outperforms the
OLS model in terms of out-of-sample prediction: both average mean scores for
coal- and gas-fired plants are higher for LASSO and the respective inter-quartiles
ranges are significantly smaller under LASSO as compared to OLS. While from a
conceptual perspective the qualitative ranking of LASSO and OLS models in terms
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of out-of-sample performance are not surprising, Figure B1 makes the important
point that in the context of the suggested framework for policy evaluation (and
given the specific empirical context), the use of a ML method is advantageous.

Appendix C: Additional results

C1. Plant-specific impacts of UK carbon tax
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Table C1. Impacts of UK carbon tax (CPS) on power plant output [TWh].

Period Total impact
2013 2014 2015 2016 2013-2016

Natural gas plants
Pembroke 0.38 0.84 2.01 0.70 3.94
Peterhead 0.00 0.00 0.00 0.00 0.00
Staythorpe 0.19 0.65 1.40 0.29 2.53
Didcot CCGT 0.52 0.85 2.26 1.05 4.68
Connahs Quay 0.28 0.58 1.04 0.68 2.58
West Burton CCGT 0.04 0.36 0.91 0.32 1.63
Grain CHP 0.21 0.66 1.39 0.37 2.63
South Humber 0.17 0.35 0.63 0.41 1.55
Seabank 0.36 0.76 1.36 0.88 3.36
Saltend South 0.07 0.17 0.67 0.49 1.41
Immingham CHP 0.18 0.37 0.66 0.43 1.64
Langage 0.23 0.29 1.00 0.83 2.35
Marchwood 0.04 0.08 0.14 0.09 0.35
Severn 0.12 0.25 0.44 0.28 1.09
Spalding 0.29 0.66 1.67 0.76 3.38
Rocksavage 0.05 0.11 0.46 0.29 0.92
Sutton Bridge 0.08 0.18 0.31 0.20 0.77
Damhead Creek 0.00 0.00 0.00 0.00 0.00
Coryton 0.11 0.24 0.43 0.28 1.07
Little Barford 0.00 0.00 0.00 0.00 0.00
Rye House 0.06 0.11 0.17 0.09 0.43
Medway 0.18 0.61 1.23 0.34 2.36
Baglan Bay 0.05 0.22 0.42 0.33 1.02
Deeside 0.07 0.15 0.26 0.17 0.65
Great Yarmouth 0.23 0.28 0.91 0.44 1.86
Shoreham 0.01 -0.05 0.17 0.12 0.25
Enfield Energy 0.10 0.21 0.37 0.26 0.94
Corby 0.08 0.14 0.13 0.00 0.35
Cottam CCGT 0.18 0.32 0.79 0.63 1.92
Fellside 0.00 0.00 0.00 0.00 0.00
Fawley Cogen 0.00 -0.01 -0.02 -0.01 -0.04
Grangemouth -0.01 -0.01 -0.02 -0.02 -0.06

Coal plants
Longannet 0.00 0.00 0.00 0.00 0.00
Cottam -0.88 -2.15 -6.95 -3.47 -13.46
Ratcliffe -0.39 -0.82 -1.46 -0.95 -3.61
West Burton COAL -1.10 -2.47 -5.98 -3.33 -12.89
Fiddlers Ferry 0.00 0.00 0.00 0.00 0.00
Ferrybridge 0.00 0.00 0.00 0.00 0.00
Drax COAL -0.69 -1.64 -3.71 -2.22 -8.25
Eggborough -0.83 -1.77 -2.74 -0.59 -5.93
Aberthaw 0.00 0.00 0.00 0.00 0.00
Rugeley -0.18 -0.40 -0.71 -0.14 -1.43
Uskmouth -0.09 -0.01 -0.36 -0.26 -0.72

Notes: Values shown refer to estimated plant-level impacts δ̂CPS
it , based on model specification M1 and

equation (18). As the CPS is adjusted in April of every year, all reported variables refer to the period
from April to March of the subsequent year. As data is available until December 2016, the 2016 period
comprises only nine months. The plants are ordered from high to low according to their installed capacity
(see Table 2).


