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Abstract

The energy system decarbonization leads to an increasing relevance of intraday markets to balance forecasting

uncertainties from fluctuating renewable energy sources. The evaluation of profit opportunities on the intraday market

and the determination of the future demand for flexible power plants by fundamental models is currently limited. Due

to computational complexity, fundamental energy system models focus on only two configurations at present. Either

technical and economic constraints are modelled in detail, but deterministically, or they are simplified considerably,

allowing for uncertainty and partly risk-constrained modelling. In this paper, a novel method enabling the integration

of forecasting errors and risk aversion into a pan-European fundamental power plant optimization model is presented

to adequately evaluate the business model and the technical market behaviour of power plants in energy systems with

a high penetration of renewables. This is realized by nesting of a Lagrangian Relaxation and an extended Benders

decomposition. We show that the process converges rapidly and grows only linearly with the number of scenarios

considered.
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I. INTRODUCTION

Climate policy promote an increasing share of renewable energies in gross final energy consumption , which is

set to reach 27% in the EU and 30% in Germany by 2030 [1] [2] [3] [4]. The expansion and use of renewables

primarily occurs in the electricity sector, which along with the heating sector, both in Germany and worldwide,

accounts for the largest share of total emissions of climate-relevant gases [5] [6].

The focus of the renewables expansion lays on wind energy (WTGS) and photovoltaic (PV) plants, which account

for 88% of the total energy output of all renewables installed by the end of 2017 in Germany [5]. Due to their



supply-dependent and thus hard to predict feed-in characteristics, marketers of WTGS and PV (so-called direct

marketers) are exposed to a significant volume risk in contrast to conventional generation plants [7]. In addition to

the uncertainty of supply-dependent generation, the electrical system load also exhibits stochastic behaviour in some

cases. With the introduction of the intraday market (ID) in 2007, a marketing platform was created for compensating

forecasting errors distorting the DA market (DA). The absolute forecasting errors and thus the trading volume and

liquidity on the ID market have grown steadily in proportion to the addition of fluctuating renewables in recent

years [5] [8].

After using dispatch optimization and load management in a portfolio, the remaining forecasting errors are com-

pensated by a counterparty on the ID market. This can either be the operator of a storage power plant or of flexible

conventional power plants [9]. The market counterparty - balancing the forecasting errors - should thereby have

retained the necessary flexibility at upstream market levels, such as the DA market. The market participant must

therefore already consider the possible sales on the ID market during the marketing decision on the DA market.

Due to the stochastic character of the trading volumes and prices, however, the return is unknown ex ante and can

therefore only be approximated using methods of uncertainty quantification. By participating in the ID market, the

operators of flexible assets are offered opportunities exposed to a price risk [7]. Participation in the ID market is

optional for flexibilities; for direct marketers, however, participation is mandatory due to the obligation to adhere

to their balancing groups supply and consumption equilibrium [10].

The evaluation of technology portfolios and regulatory decisions in the energy market during this transformation

process requires a model framework that fundamentally reproduces realistic interactions in unit commitment for

scenarios of a future energy system. The commitment decisions must reflect the real decision-making process of

power plant operators. This implies the consideration of several market stages under uncertainty and risk-averse

decision-making. The adequate mapping of technical and economic constraints of individual units thus is as important

as the endogenous consideration of market coupling.

The described research questions will be addressed in this paper, which presents a significant distinguishing feature

from the state-of-the-art:

1) Methods using perfect foresight decisions: Current large scale dispatch optimization models considering all inter-

connected market zones in the ENTSO-E area usually focus only on decisions under perfect foresight [11] [12] [13] [14].

Some include detailed constraints allowing for unit commitment decisions [15] [16] [17] [18]. Only few approaches

take into account simplified multistage decisions [19].

2) Stochastic meta-heuristic approaches: Heuristic approaches lack the guarantee of optimality and have only been

applied to small test systems [20] [21] [22].

3) Stochastic mathematical optimization approaches: Ensuring the solution’s optimality and the process’ trans-

parency can only be achieved by applying mathematical optimization methods. Various approaches considering i.i.d.

uncertainties [23] [24] [25] [26] and time-dependent uncertainties, modelled either through markov-chains [27] or



time series analysis approaches [28] [29] [30] [31] [32], exist. Scenario reduction methods are partially used to

handle solvability issues in high dimensional models [33] [34] [35] [36]. The integration of risk measures associated

with the depicted uncertainties leads to a significant increase in complexity and is therefore used in test systems

only [24] [25] [36]. So far, there are hardly any approaches that consider complex power plant restrictions requiring

integer decision variables. In general linear approximations of these constraints have been realized [33]. In order

to economically evaluate the operating decisions of individual plants or to be able to carry them out on a system-

wide level, it is necessary for electricity market models to generate market clearing prices. Such market clearing

prices must reflect the market participant’s decision undistortedly. This implies that unit commitment decisions

of all individual plants based on the modelled market prices lead to the same decision as the model endogenous

unit commitment decision. This in turn requires a suitable and detailed modelling of specific causal relations

and influencing factors such as the adequate representation of start-up costs in the electricity prices [28] [34]. The

formulation of the stochastic unit commitment problem as a mathematical optimization model poses great challenges

for the available computing ressources, so that the market zones depicted in the literature are predominantly limited

to test networks or small supply areas [23] [24] [25] [26] [27] [28] [32] [34] [36]. Only publications envisaging

the Wilmar Joint Market Model [29] [30] [33] and a second approach [35] depict real-scale systems such as the

German or the Irish market areas [31] but without complex restrictions.

This paper presents a procedure enabling the integration of forecasting errors of fluctuating renewable energies

and the electrical system load into a pan-European fundamental power plant optimization model taking into

account risk averse decision-making. All relevant techno-economic constraints of several thousand single units

are considered [37]. The integration of unit commitment decisions based on the Conditional Value-at-Risk (CVaR)

ensures a realistic decision process of each unit with regard to the trade off between DA- and/or ID participation.

Additionally, all market areas within the European interconnected system including endogenous market coupling

are taken into account. Section II presents an overview of the overlaying Lagrangian Relaxation coordinating the

bid-ask matching and the market coupling for the pan-European power system. Subsequently, the single power

plant optimization is described for thermal and for hydro power plants separately. In section III the decomposition

of thermal units is depicted followed by the modelling of hydro power plants in section IV. The advantages of

the decomposition over the closed formulation are benchmarked in section V. Section VI provides an complete

overview on the convergence behaviour of the nesting Langrangian Relaxation and extended Benders decompositon.

Concluding, the findings and suggestions for future research are presented in section VII.



II. PAN-EUROPEAN POWER PLANT OPTIMIZATION

Fundamental energy system models based on unit commtiment approaches in general aim at cost minimization,

which converges into real market behaviour in markets with uniform pricing [18]. The joint consideration of the

DA and the ID market subject to forecasting uncertainties can be represented by a two-stage linear programming

approach [7]. The first stage consists of the objective function cTx subject to the set of constraints from eq. (2).

The second stage consists of the πω-weighted objective functions qTω yω representing a set Ω of discrete scenarios.

The latter is restricted by the recourse matrix Wyω and the technology matrix Tω coupling to the first-stage, which

must correspond to the vector hω .

min
x,yω

z = cTx+
∑
ω∈Ω

πωq
T
ω yω, (1)

s.t. Ax = b (2)

Tωx+Wyω = hω (3)

x ≥ 0, yω ≥ 0,
∑
ω∈Ω

πω = 1, ω ∈ Ω. (4)

Applying the concept to an energy system consisting of K units covering C countries for T time steps, where T

usually corresponds to an annual simulation in hourly resolution, the following objective function can be formulated

min
∑
c∈C

∑
k∈Kc

∑
t∈T

(
ac,kν

DA
c,k,t + sucDA

c,k,t

)
︸ ︷︷ ︸

DA-Costs KDA(xDA
c,k,t)

+
∑
c∈C

∑
k∈Kc

∑
t∈T

∑
ω∈Ω

πω

(
bk,cP

Phy
c,k,t,ω

)
︸ ︷︷ ︸

Expected ID-Costs E
(
KID(xID

c,k,t,ω)
)

. (5)

The unit commitment decision νDA
c,k,t (with ν ∈ B = {0, 1}) is taken in the first stage eventually causing fixed costs

ac,k. If the unit changes its commitment state from offline (0) to online (1) start costs sucDA
c,k,t accrue. The start

costs depend on how long the unit was offline before considering the additional expenditure caused by heating up

cold boilers and turbines according to [37]. The physical power output PPhy
c,k,t,ω is determined in the second stage for

each probability-weighted scenario considering a linear cost term bk,c. The physical power is splitted up to provide

power for the DA PDA
c,k,t and ID market P ID

c,k,t (not relevant for the objective function as their coefficients equal zero).

The coupling constraints 6 and 7 ensure that the power output of all endogenously optimized units equal the load

D
DA/ID
c,t including exogenously defined REN-feed-in EEDA/ID

c,t and market coupling decisions MC
DA/ID
c,t .

DDA
c,t =

∑
k∈Kc

PDA
c,k,t + EEDA

c,t +MCDA
c,t , c ∈ C, t ∈ T (6)

DID
c,t,ω =

∑
k∈Kc

P ID
c,k,t,ω + EEID

c,t,ω +MCID
c,t,ω, c ∈ C, t ∈ T, ω ∈ Ω. (7)

Langrangian Relaxation is applied to use the advantage of parallel computing. Furthermore, each additionally

regarded scenario leads to a quadratic increase of the MIP’s size, which represents a key influencing factor for its



solvability and computing time. Therefore, an existing deterministic approach [18] is advanced by integrating it’s

stochastic extension to

max
λDA
c,t ,λ

ID
c,t,ω

{
min

∑
c∈C

∑
k∈Kc

∑
t∈T

(
ac,kν

DA
c,k,t + sucDA

c,k,t

)
+
∑
c∈C

∑
k∈Kc

∑
t∈T

∑
ω∈Ω

πωbc,tP
Phy
c,k,t

−
∑
c∈C

∑
t∈T

λDA
c,t

(∑
k∈Kc

PDA
c,k,t + EEDA

c,t +MCDA
c,t −DDA

c,t

)

−
∑
c∈C

∑
t∈T

∑
ω∈Ω

πωλ
ID
c,t,ω

(∑
k∈Kc

P ID
c,k,t,ω + EEID

c,t,ω +MCID
c,t,ω −DID

c,t,ω

)}
.

(8)

λDA
c,t , λ

ID
c,t,ω ∈ R: Lagrangian-Multiplier DA/ID

Each single unit’s contribution margin can thereby be maximized (corresponds to minimizing the unit’s costs)

subject to its specific Lagrangian multipliers independently

min
∑
t∈T

(
ac,kν

DA
c,k,t + sucDA

c,k,t − λDA
c,t P

DA
c,k,t

)
+
∑
t∈T

∑
ω∈Ω

πω

(
bc,tP

Phy
c,k,t − λ

ID
c,t,ωP

ID
c,k,t,ω

)
. (9)

The adjustment of the Langrangian multipliers is performed in an iterative process using a subgradient approach

until convergence is reached. Furthermore, the Lagrangian multipliers of a relaxed demand constraint - designated

as shadow prices - can be interpreted as uniform market prices [38].

The objective function F (x) according to eq. (9) leads to an optimization of the expected value and thus assumes

risk-neutral behavior of the power plant operator. Let f(x, ω) be the objective value, which results in a specific

scenario ω

f(x, ω) =
∑
t∈T

(
a · νDA

t + sucDA
t − λDA

t PDA
t

)
︸ ︷︷ ︸

DA-Part

+
∑
t∈T

(
b · PPhy

t,ω − λID
t,ωP

ID
t,ω

)
︸ ︷︷ ︸

ID-Part

, (10)

then

F (x) = E(f(x, ω)). (11)

In reality, however, power plant operators do not trade as risk-neutral actors, but rather try to avoid potential losses

in individual ID scenarios or at least limit them. This risk-averse behaviour can be depicted in the individual power

plant optimization by the introduction of a suitable risk measure. This paper suggests and applies the CVaR, a

coherent risk measure preserving the convexity of the optimization problem [39]. The CVaR can be interpreted as

the conditional mean of the loss distribution above the α-quantile. The CVaR is added to the objective function

multiplied by a weighting factor β:

F (x) = E(f(x, ω)) + β · CVaRα(f(x, ω)). (12)

The value of β determines the impact of the risk measure on the optimization results. The translation invariance of

the CVaR allows for the integration of eq. (12) into eq. (9) as follows

F (x) =(1 + β)
∑
t∈T

(
a · νDA

t + sucDA
t − λDA

t PDA
t

)
+
∑
ω∈Ω

∑
t∈T

πω

(
b · PPhy

t,ω − λID
t,ωP

ID
t,ω

)
+ β · CVaRα.

(13)



with CVaRα according to [40]:

CVaRα = VaRα +
1

1− α
∑
ω∈Ω

πωηω (14)

ηω ≥
∑
t∈T

(
b · PPhy

t,ω − λID
t,ωP

ID
t,ω

)
−VaRα, ω ∈ Ω (15)

VaRα ∈ R, ηω ≥ 0. (16)

III. DECOMPOSITION APPROACH OF THERMAL POWER PLANTS

The power plant models as introduced above are characterized by a block-angular structure of the constraint matrix,

which comprises both decision stages. This means that some of the constraints – represented by the matrix A and

the right-hand side b – exclusively refer to the first-stage, i.e. DA, variables, whereas other constraints – represented

by the matrices Tω and W and the right-hand side hω – have to be satisfied conjointly and are thus coupling the

ID decisions per scenario ω ∈ Ω to the DA decisions.

The specific problem structure yields a quadratic growth of the problem size with an increasing number |Ω| of ID

scenarios. Furthermore, the thermal power plant models exhibit a high model complexity at already few scenarios

mainly due to the binary unit commitment decision variables. Respective implications for the computing requirements

(storing and solving the models) render decomposition approaches indispensable for complexity purposes. The block-

angular structure suggests the application of a Benders decomposition, also known as the L-shaped algorithm [41].

Apart from the requirements associated with the specific problem structure, the Benders decomposition requires the

second-stage variables to be all continuous, which is fulfilled in our case since the binary decision to determine if

a power plant will be online or not is already made in the first-stage. When considering the risk measure CVaR

in the decision process of the power plants the classic Benders decomposition framework exhibits a significant

disadvantage in the sense that for some model instances the number of required algorithm iterations is inadmissibly

high. This can be explained by the fact that in the classic Benders decomposition the second-stage recourse – that

means both expected costs and ID CVaR – are estimated by a single class of constraints (see below) and thus

cannot adequately reflect the heterogeneity of the two measures for particular model instances. As a consequence

the classic Benders decomposition has been adapted and extended according to the findings in [42]. The algorithm

and the exact formulation of this new approach for our single unit commitment problem are explained in detail below.

A. General decomposition process

The general process of the extended decomposition algorithm is identical to the one the classic Benders decompo-

sition. As a first step, the extensive formulation as given in section II is split along its block-angular structure into a

master problem (MP) and |Ω| subproblems (SP) for each discrete ID scenario. Hereby, the master problem reflects

the decision making process of the first stochastic stage, whereas the subproblems represent the second stochastic

stage whose decisions depend on the first-stage decisions on the one hand and on the scenario-specific parameters

on the other hand. The general idea of the algorithm is to iteratively determine an optimal solution for the master



problem and pass it on to the subproblems. Based on the fixed first-stage decision variables, we subsequently try

to optimally solve the subproblems. Depending on the feasibility of the subproblems for the particular first-stage

decision, different classes of cutting planes (optimality cuts or feasibility cuts) are added to the master problem.

With each cut the solution space is reduced step by step such that the combination of the first- and second-stage

decisions will converge towards the overall optimum. The mathematical description of the master problem for our

particular and extended case is given by:

min
xDA, θE, θCVaR, V aRi, ηi,ω

(1 + β)
∑
t∈T

(
a · νDA

t + sucDA
t − λDA

t PDA
t

)
+ θE + β · θCVaR (17)

s.t. AxDA ≤ b (18)

θE ≥ ei − EixDA i = 1, ..., τ (19)

0 ≥ dj −Djx
DA j = 1, ..., σ (20)

xDA =
(
νDA, sucDA, PDA

)T
(21)

θCVaR ≥ V aRi +
1

1− α
∑
ω∈Ω

πωηi,ω i = 1, ..., τ (22)

ηi,ω ≥ êi,ω − Êi,ωxDA − V aRi i = 1, ..., τ, ω ∈ Ω (23)

ηi,ω ≥ 0 i = 1, ..., τ, ω ∈ Ω (24)

V aRi ∈ R i = 1, ..., τ. (25)

Apart from the first-stage decision variables xDA the master problem contains the additional auxiliary variables θE

and θCVaR, which represent an approximation of the expected second-stage recourse cost over all ID scenarios and

the resulting second-stage CVaR, respectively. σ and τ denote the number of feasibility cuts (20) and optimality

cuts (19) (22) introduced in previous iterations. In opposition to the classic Benders decomposition, the extended

method features different classes of optimality cuts for θE and θCVaR in order to build distinct linear approximations

for both the expected recourse and CVaR of the second stage. The CVaR optimality cuts in (22) are supported

by the auxiliary constraints (23) - (25). Note that with every optimality cut i we introduce separate copies of the

auxiliary variables V aRi and ηi,ω . Thus, the extended Benders decomposition constitutes a combined column and

row generation procedure. Let
(
xDAν , θE

ν

, θCVaRν , V aRνi , η
ν
i,ω

)T
be the optimal solution to the master problem

for Benders iteration ν. The fixed optimal value for xDAν is passed on to the subproblems, which are then solved

to find an optimal decision for their respective ID scenario ω ∈ Ω depending on the given DA decision and the

scenario specific parameters. The subproblems are given by

Q
(
xDAν , ω

)
= min

xID
ω

∑
t∈T

(
b · P IDt,ω − λID

t,ωP
Phy
t,ω

)
(26)

s.t. WxID
ω ≤ hω − TωxDAν (27)

xID
ω =

(
P IDt,ω , P

Phy
t,ω

)T

. (28)

When solving the subproblems, two cases can occur:



1) All subproblems ω ∈ Ω can be solved to optimality: If the stopping condition of the algorithm (see below) is

not yet fulfilled, the solutions of the subproblems may be optimal for the given first-stage decision xDAν , but the

combined solution
(
xDAν , xIDν

ω=1, ..., x
IDν

ω=|Ω|

)T

is not yet optimal for the overall problem. In order to receive a better

combined solution in the next iteration ν + 1 we introduce distinct optimality cuts for the linear approximations of

the expected recourse cost and the CVaR of the second-stage. These cutting planes use the retrieved dual solution

of the subproblems to delimit the solution space of the master problem. Let ρνω be the associated optimal dual

solution of the linear program (26) - (28). The coefficients of the eq. (19) and (23) are then calculated as

ei =
∑
ω∈Ω

πωρ
νT

ω hω Ei =
∑
ω∈Ω

πωρ
νT

ω Tω (29)

êi,ω = ρν
T

ω hω Êi,ω = ρν
T

ω Tω. (30)

2) At least one of the subproblems ω ∈ Ω is infeasible: Such an infeasibility arises when xDAν satisfies the first-

stage constraints, yet it does not fully consider the implications it lays upon the second stage. In this case we want

to generate a cutting plane forbidding the particular solution xDAν in the next iteration ν + 1. In order to obtain

such a feasibility cut as in (20) we consider a modification of the infeasible subproblem ω

Q
(
xDAν , ω

)
= min
xID
ω ,v−

eTv− (31)

s.t. WxID
ω − 1v− ≤ hω − TωxDAν (32)

xID
ω =

(
P IDt,ω , P

Phy
t,ω

)T

(33)

v− ≥ 0. (34)

Let ρνω again be the associated optimal dual solution for the now modified subproblem ω. We can then determine

the coefficients of the feasibility cut (20) as

dj = ρν
T

ω hω, Dj = ρν
T

ω Tω. (35)

After that we continue witht the next iteration ν = ν+ 1 and solve the master problem again with the newly added

feasibility cut.

If all subproblems have been solved to optimality, the convergence check is performed. As long as the stopping

condition is not yet fully satisfied we go back to solving the master problem with the newly added optimality cuts

and raise the iteration counter ν by one. In this paper we are using an ε-relaxed stopping condition to abort the

iterative decomposition algorithm. We therefore define an absolute tolerance level εabs. It can be shown that the

two introduced optimality cuts are supporting hyperplanes for the expected recourse costs and the CVaR of the

second stage. Thus, it follows that at any iteration ν of the algorithm θE
ν

and θCVaRν represent lower bounds to

the actual second stage terms

θE + β · θCVaR︸ ︷︷ ︸
=:θν

≤
(
E
(
Q
(
xDAν , ω

))
+ β · CV aR

(
Q
(
xDAν , ω

)))
︸ ︷︷ ︸

=:θ∗

, (36)



where the components of θ∗ are defined the following way

E
(
Q
(
xDAν , ω

))
=
∑
ω∈Ω

πωQ
(
xDAν , ω

)
(37)

CV aR
(
Q
(
xDAν , ω

))
= V aR+

1

1− α
∑
ω∈Ω′

πω

(
Q
(
xDAν , ω

)
− V aR

)
where Ω′ =

{
ω|Q

(
xDAν , ω

)
≥ V aR

}
.

(38)

In eq. (38) V aR can be analytically determined by finding the α-quantile of the underlying distribution function

for the discrete realizations Q
(
xDAν , ω

)
for all ω ∈ Ω. Considering the findings in eq. (36) it immediately follows

that

fν ≤ f∗, (39)

where fν is the optimal objective value of the master problem at a given iteration ν and f∗ can be calculated as

f∗ = fν − θν + θ∗. (40)

The stopping condition is eventually given by

f∗ − fν ≤ εabs. (41)

Additionally we introduce a stopping condition based on a relative tolerance εrel and let the algorithm finish as

soon as either the absolute or the relative condition is satisfied

f∗ − fν

|fν |
≤ εrel. (42)

B. Multicut Benders

The optimality cuts in (19) and (22) aggregate the dual information retrieved by the subproblems by weighting

them with their respective probability and thus generating one single cut. In opposition to this so-called singlecut

Benders, the dual information can also be used to generate a distinct cutting hyperplane for each of the ID scenarios,

accounting for the name multicut Benders. With regard to the nature of the underlying subproblem models it is

generally beneficial to consider using the multicut method when the subproblems show a high variance in their

stochastic values. In this case singlecut Benders could lead to a too high loss of information on extreme ID scenarios.

The above stated singlecut version can be transferred to a multicut version by changing eq. (19) and (22) respectively

to

θEω ≥ êi,ω − Êi,ωxDA , i = 1, ..., τ, ω ∈ Ω (43)

θCVaR
ω ≥ V aRi +

1

1− α
ηi,ω , i = 1, ..., τ, ω ∈ Ω. (44)

Here, the definition of the coefficients êi,ω and Êi,ω does not change compared to eq. (30). Furthermore, θE will

be replaced by
∑
ω∈Ω πωθ

E
ω and θCVaR by

∑
ω∈Ω πωθ

CVaR
ω in the objective function (17) of the master problem.



C. MIP starts and branch-and-bound cut-offs

The master problem represents a computational bottleneck due to the complicating binary decision variables νDA
t

for the unit commitment decisions. This situation is aggravated by the fact that the master problem has to be

resolved as soon as new optimality cuts have been added. In order to reduce the computing time, especially for

those power plant models that require more Benders iterations, the solver can be provided with a MIP start (mixed

integer programming start) for the master problem which serves as an initial and feasible starting point for the

black-box branch-and-bound algorithm. Since, as a result of the newly introduced optimality or feasibility cuts,

the last obtained master problem solution – in particular the old values for θE and θCVaR – is no longer feasible

for the updated master problem, it can hence not be used as a MIP start. Using the identity in eq. (36) one can

nevertheless construct a valid MIP start with the help of the subproblem solutions. Let an optimal solution to the

master problem in iteration ν for the two Benders methods (singlecut and multicut) be given by

xsinglecutν =



xDAν

θE
ν

θCVaRν

V aRνi , i = 1, ..., τ

ηνi,ω, i = 1, ..., τ, ω ∈ Ω


xmulticutν =



xDAν

θE
ν

ω , ω ∈ Ω

θCVaRν

ω ω ∈ Ω

V aRνi , i = 1, ..., τ

ηνi,ω, i = 1, ..., τ, ω ∈ Ω


. (45)

Together with the values obtained from eq. (37) and (38) we can then derive a valid MIP start for the next iteration

ν + 1

xsinglecut
MIP start =



xDAν

E
(
Q
(
xDAν , ω

))
CV aR

(
Q
(
xDAν , ω

))
V aRνi , i = 1, ..., τ

V aR
(
Q
(
xDAν , ω

))
ηνi,ω, i = 1, ..., τ, ω ∈ Ω

ητ+1,ω, ω ∈ Ω


xmulticut

MIP start =



xDAν

Q
(
xDAν , ω

)
, ω ∈ Ω

θ̂ω, ω ∈ Ω

V aRνi , i = 1, ..., τ

V aR
(
Q
(
xDAν , ω

))
ηνi,ω, i = 1, ..., τ, ω ∈ Ω

ητ+1,ω, ω ∈ Ω


, (46)

where

ητ+1,ω = max
{

0, Q
(
xDAν , ω

)
− V aR

(
Q
(
xDAν , ω

))}
ω ∈ Ω, (47)

and

θ̂ω = max

{
max

{
V aRνi +

1

1− α
ηνi,ω

}
i=1,...,τ

, V aR
(
Q
(
xDAν , ω

))
+

1

1− α
ητ+1,ω

}
ω ∈ Ω. (48)

Note that the fifth and the seventh vector entry of the generated MIP start – both for the singlecut and the multicut

version – are the newly introduced variables in the course of the column generation method of our extended Benders

approach. In addition to the MIP start, we can pass the solver a so-called cut-off value. Considering the fact that

we try to minimize the master objective function, a cut-off value represents an upper bound to the optimal objective

value. The solver can then neglect all nodes in the branch-and-bound tree whose relaxation values are higher than

the cut-off value and hence significantly reduce solving time. In our context an upper bound to the optimal value

of the overall problem is always given by f∗ as defined in eq. (40).



D. Hybridization with closed solution

One of the overall goals of the applied decomposition approach is to achieve a reduction in computing time.

However, it was shown that for some instances of our unit commitment problem the extensive, i.e. closed, model

formulation performs faster, especially when only considering few ID scenarios. We therefore apply a hybridization

concept which exploits the fact that the overall computing time of a model generally correlates with the number of

Benders iterations needed. We were able to empirically identify a threshold γ of Benders iterations for which the

closed solution outperforms the extended Benders decomposition in terms of solving time. With this knowledge we

can implement a hybridization of the two solution concepts without having to test the solving times ex ante. The

procedure starts by solving every power plant k for every time slice κ using the extended Benders decomposition at

the start of the superordinate Lagrangian iterations. Let NBenders
k,κ then be the number of Benders iterations needed

for the specific model (k, κ) in a Lagrangian iteration. In case that NBenders
k,κ > γ, the respective power plant model

(k, κ) will henceforth be solved as a closed model in all following Lagrangian iterations, but only for the particular

time slice κ.

IV. OPTIMIZATION APPROACH OF HYDRO POWER PLANTS

In opposition to the thermal power plants, the hydro power units can be modelled as pure linear programs without

binary on/off variables due to their fixed operation costs being almost zero, missing ramp conditions and missing

minimum up- and downtimes. The physical power PPhy
t is composed of a turbine part PTurb

t and an additional

pump part PPump
t for pumped storages. For mere annual hydro storages without water pumps, the decision variable

PPump
t is omitted accordingly. Seasonal effects can only be adequately taken into account in the optimization process

of storage facilities if the optimization period is extended to the whole simulation period and not cut into time slices

as done for the thermal power plants. The initial and end fill levels are given as boundary values to the optimization.

For the solution of the linear storage models, dynamic programming has proven to be considerably more efficient

than linear programming, especially in case of yearly simulation periods. The dynamic programming of the hydraulic

power plants, however, only allows an isolated consideration of the DA market when calculating the optimal power

schedule. In order to also consider the stochastic decisions of the ID stage, the existing solution process is extended

by a consecutive second solution stage since a two-stage stochastic linear program over the entire observation period

would be disadvantageous with regard to runtime and RAM requirements.

Initially, a mere DA scheduling over the entire simulation period is carried out by applying the dynamic programming

approach resulting not only in the specific turbine and pumping schedules, but also in the respective fill levels of

the storage reservoirs for the entire simulation period. Subsequently, the fill levels serve as initial and ending fill-

level bounds for the second stage including ID decisions, which is optimized in time slices. The hydraulic power

plants can thus adapt their schedules to the marketing opportunities on both the DA and the ID market within the

framework of the fixed storage limits. Hence, the filling levels of the storage reservoirs remain the same at the

cutting edges of the time slices, but can be varied in between. Since the solver provides very efficient solution



TABLE I

COMPARISON OF SOLVING TIMES OF THE DIFFERENT BENDERS METHODS AND EXTENSIONS (MIP STARTS AND CUT-OFFS).

Without extensions With extensions Relative difference

Singlecut 3.477 s 3.006 s −13.55 %

Multicut 0.945 s 0.503 s −46.77 %

Relative difference −72.82 % −83.27 %

algorithms for pure linear programs, the hydraulic power plant models can be solved as an extensive closed linear

program even with the addition of a stochastic ID stage. An extended Benders decomposition as applied to the

thermal power plants can generally be omitted.

V. VALIDATION OF COMPUTATIONAL EFFICIENCY

The model was tested for a benchmark case containing real data for 2014. Thereby, the power plant park within

the European interconnected grid/markets was reconstructed considering each individual unit. For this purpose,

commercial databases and publicly available data was used [43] [44] [45]. Exogenously fixed (hourly resolved)

time series, for the electrical system load, renewables feed-in, other decentralized generators and net transfer

capacities were generated using the ENTSO-E-Transparacy’s data, as well as market transparency data of EPEX

Spot SE [46] [47]. Mustrun time series and available power were derived from published unit schedules. Power plant

parameters (gradients, efficiencies, start costs, etc.) were extracted from public studies and expert knowledge [48].

The forecasting errors, i.e. the model’s ID load, were generated from the empirical forecasting errors using of time

series analysis methods [49]. If not stated otherwise, the number of ID scenarios wighted with their individual

probability of occurence will be 20. With regard to the risk coefficients α (VaR-quantile) and β (risk aversion

parameter) we used the values 0.8 and 0.5, respectively. It was however shown that the computational efficiency

does not significantly depend on these parameters. The tolerances in the stopping condition where set to εabs = 10

and εrel = 3%.

A. Comparison of the different decomposition versions

Initially, we compare the solving time between the singlecut and the multicut version of the extended Benders

decomposition as well as the impact of the MIP start and cut-off extensions. Table (I) shows the associated average

solving times for all thermal power plant models over the course of the whole simulation year.

It is evident that both with and without the extensions the multicut version of the decomposition yields a significant

reduction in runtime. This can directly be linked to the fact that the multicut version generally needs fewer iterations

until the stopping condition is satisfied. Figure (1) shows the underlying distribution of required iterations for both

the singlecut and the multicut version. Since the vast majority of the models only needs one iteration to fully

converge – 94.97 % in the singlecut version and 95.11 % in the multicut version – the abscissa starts at two in
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Fig. 1. Distribution of required optimality cuts for all power plant models in case of the singlecut and the multicut version (mind that 94.97 %

in the singlecut version and 95.11 % in the multicut version are solved in one cut).

order to focus on the distribution beyond that value. The share of models that needs more than ten iterations for

full convergence is summarized in one bar, accounting for 0.13 % in the singlecut version, but only for 0.011 %

in the multicut version. The global maximum of iterations needed is 22 and 55 for the singlecut and the multicut

version, respectively.

Considering the findings so far – especially as far as the reduction of solving time is concerned – we identify the

multicut version with the MIP start and cut-off extensions as the most suitable decomposition method for our model

instances and henceforth restrict all further examinations and comparisons to this method.

B. Comparison with the closed model solution

Subsequently, we compare the extended decomposition approach with the closed model formulation of the stochastic

single unit commitment problem using three criteria: Solving time, RAM requirement and build-up time for the

models.

1) Solving time: As stated in section III-D we added a hybridization approach to the decomposition method in

order to filter those power plant models that can be solved more efficiently in terms of computing time with a

closed model formulation. We introduced a break-even-threshold γ which indicates when a plant model should be

solved with a closed model instead of the decomposition method in all further superordinate Lagrangian iterations.

Figure (2) left shows how γ can be identified empirically. It depicts the average solving times of the decomposition

approach for all power plant models as a function of the number of required iterations until full convergence. The

abscissa only ranges until seven iterations in order to guarantee a sufficient data basis for the respective values (see

figure (1)). In contrast, the figure also shows the corresponding solving times for the same models that have been

solved with an extensive closed approach. We can clearly see that the solving time is positively correlated with the

number of iterations needed. The hybridization threshold can be identified as γ = 3.
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Fig. 2. Average solving time as a function of required Benders iterations and break-even-threshold with closed reference solution (l); Average

solving time for an exemplary time slice as a function of considered ID scenarios (r)

TABLE II

COMPARISON OF THE AVERAGE SOLVING TIMES OF THE DECOMPOSITION APPROACH WITH THE CLOSED REFERENCE SOLUTION.

Closed Benders

Without hybridization With hybridization

0.697 s 0.641 s 0.390 s

Solving time benefit - 8.03 % 44.05 %

Table (II) summarizes the effects on the average solving time of the decomposition approach in comparison to

the closed reference solution. The table also reflects the difference in solving time that the applied hybridization

accounts for. In the case of the hybridized decomposition approach we see a significant reduction in solving time

of about 44 % despite the fact that only a small fraction, namely 1.16 %, of power plant time slice models (k, κ) is

being hybridized, i.e. solved as a closed model, in the course of the Lagrangian iterations. The differences of the

average solving time of the Benders version without hybridization to the value in table (I) (Benders multicut) can

be explained by the fact that we needed to analyze a more progressed Lagrangian iteration in this section in order

to guarantee a sufficient saturated level of hybridization.

Figure (2) right concludes the examination of the solving time with a variation of the considered ID scenarios

(as stated above only 20 scenarios were used so far). Since we only want to provide an estimation of the growth

behaviour of the solving time as a function of ID scenarios, we, for this particular case, have only performed a

week simulation on a local machine – instead of a computing cluster, which was used for the yearly simulations.

Accordingly, the absolute values of solving time differ from the values found above, but, nevertheless, allow us to

come to general conclusions about the runtime growth. For both the closed and the decomposed solution method

we can see a linear increase in solving time as a function of considered ID scenarios. In opposition to the closed
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Fig. 3. Overall RAM requirement for storing all models as a function of considered ID scenarios (l); Average build-up time as a function of

number of considered ID scenarios (r).

solution, the decomposition approach, however, yields a smaller growth rate amongst a lower offset at already 20 ID

scenarios. In conclusion, we can state that the advantageousness of our applied decomposition approach increases

with the number of ID scenarios considered.

2) RAM requirement: Figure (3) left shows the respective RAM requirement in GB for all thermal power plant

models over all time slices as a function of the number of ID scenarios considered. In the case of a closed problem

formulation, the memory requirement increases linearly and almost proportionally to the number of scenarios due

to the sparse extensive constraints matrix. In contrast, the RAM requirement for the models in the extended Benders

formulation is between 71 % and 78 % lower, due to the fact that the model matrices, which are the same for all

subproblems, only have to be stored once and account for a dominant share of the total memory requirement. The

still observed linear, but this time under-proportional increase of the RAM requirement as a function of ID scenarios

can be explained by the memory requirement of the objective function coefficients and the vectors of the right hand

side, which are the only ones that differ between the scenarios.

3) Build-up time: Since, in the case of our extended decomposition approach, the build-up process of the models

– i.e. the composition of the second-stage matrices and other vectors – always consists of the same arithmetic

operations, the build-up time required for a given number of scenarios is independent of the concrete model

instance, i.e. it is the same for all power plants and all time slices. Figure (3) right depicts the average build-up

time as a function of considered ID scenarios for the extended Benders decomposition and the closed solution.

While the build-up time increases slightly more than linear with the number of scenarios for the closed problem

formulation, it remains constant for the extended Benders decomposition at a significantly lower offset. The largest

proportion of time in the build-up process of the closed models is spent on the diagonalization of the extensive

second-stage matrices, which takes longer if more scenario matrices have to be diagonalized. This step is omitted

in the extended Benders decomposition, which explains the lower and constant setup time.
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Fig. 4. The convergence process shown through the relative Gaps (l) and the Lagrangian objective (r).

VI. VALIDATION OF CONVERGENCE AND MARKET PRICES

The previous section dealt with the performance of the decomposition used within the single unit optimization. In

the following, the performance of the overlaying Lagrangian relaxation is presented and evaluated. The relative gap

for the German market area is shown for the relaxed DA constraint as well as for the relaxed (probability weighted)

ID constraints – split into both a positive and negative part, since the forecasting errors, in contrast to the positive DA

load, may occur in both directions. The gap represents the amount by which the load deviates from the generation

in relation to the demanded load (see figure (4) left). Although a dominant opposing zig-zagging between positive

and negative ID load coverage amounts can be seen, the procedure eventually converges. The relative gaps on the ID

market with 0.6 % and 1.2 % for the positive and negative forecasting errors, respectively, are higher than the gap on

the DA market with exactly 0 % (full coverage). The deviations are balanced through a heuristic, which turns on/off

power plants, if the resulting unit commitment is insufficient to cover the load. Afterwards, an economic dispatch

balances the schedules through a closed linear program (with fixed unit commitment decisions). The objective of the

Lagrangian term provides a lower bound for the optimal solution. It should therefore (degressively) increase within

the Lagrangian iterations (see figure (4) right converging at around 11 Bn.e). The slight dip in the Lagrangian

term in the last iterations arises from the heuristic postprocessing, which cannot guarantee global optimality, but

load coverage.

The final Lagrangian multipliers of the relaxed DA and ID load constraint are another important model output as

they represent the shadow prices of these constraints. For this model architecture, they therefore represent the DA

and ID market prices. Figure (5) shows the simulated German DA and ID prices for the second week of 2014.

There is one single DA price for each simulated hour. The ID price is represented by a distribution of prices plotted

using statistical quantile analysis. The red cross lines represent the median of the price distribution of the respective

hour and the boxes represent the range between the 25% and 75% quantiles. Values beyond this are represented by

the dashed vertical lines and the red crosses represent outliers. It can also be seen that volatility in the ID market



Fig. 5. DA price and ID price distributions (25%-75% quantiles represented by boxes; outliers are red crosses) for the second week of January

2014.

TABLE III

COMPARISON OF EMPIRIC PRICES AND SIMULATED PRICES (MEAN AND STANDARD DEVIATION).

all values in [ e
MWh

]
Mean Std. Dev.

DA ID DA ID

Emperical Prices 32.76 33.14 12.77 13.40

Stochastic Optimization 31.37 31.76 7.73 9.14

Deterministic Optimization 31.72 - 7.02 -

is very high, especially in high-price phases. This is due to the fact that in these hours the provision of positive

power on the ID market must offer a sufficiently large incentive to refinance turning on additional peak load power

plants. The ID price is on average slightly higher than the DA price (see table (III)) - both empirically and in the

model. This is due to the fact that the forecasting error has an offset empirically and in the model. However, a risk

premium that compensates for price uncertainty on the ID market is endogeniously considered. This price offset

was also observed in model calculations with no mean value in the forecast errors. The modelled DA price is on

average slightly lower than the empirical DA price. In the stochastic model the price is in mean even slightly lower

than in the deterministic model. The price spread between DA and ID amounts both in reality and in the model

0.39e/MWh. The standard deviation of prices in the model is also slightly below real market prices. The stochastic

model further results in standard deviations for the DA price slightly above the deterministic model. The standard

deviation on the ID market is both empirically and in the model higher than on the DA market.

VII. CONCLUSION AND OUTLOOK

In this paper, a stochastic unit commitment approach taking into account forecasting errors of both REN and

electrical load was developed. In contrast to the broad range of classical fundamental electricity market models,

which only take into account the unit commitment for the DA market, the ID market to balance forecasting errors



is considered. As a basis for the further development, a European electricity market model based on Lagrangian

Relaxation is used [18]. It relaxes the coupling load constraint of each individual market area within the continental

synchronous area while endogenously considering market coupling in its subgradient procedure. This allows a

systemic decomposition so that the optimization problems of the single units can be solved in an uncoupled manner.

This approach has been extended by a set of ID load coverage constraints. Here, the stochastic load in the ID market

corresponds to the DA forecasting error. The physical schedule of the power plant and its distribution onto the two

markets is thus determined. Due to the immanent price uncertainty in the ID market, the consideration of risk-averse

behavior is compulsory in order to depict a more realistic decision behavior. The use of CVaR has proven to be

suitable for this purpose. The mixed integer optimization problem grows drastic for each additional ID scenario

considered, which leads to a significant increase in computing time if several dozen scenarios are considered.

To reduce the complexity when solving optimization problems, a hybrid solution of the closed approach and an

L-shaped method with multi-cuts extended by column generation is used. In addition, the master problem was

significantly accelerated by using MIP-starts and branch-and-bound cut-offs. In the application to the procedure for

the DA and the ID market in Germany, taking into account all DA markets in the European integrated network, a

plausible and realistic behavior of the model was shown.

The presented approach provides the basis for systemic analyses with regard to future market developments.

Scenarios, such as the TYNDP, the MAF or the eHighway can be used to assess the impact of the ID markets in

the future [50] [51] [52]. It can be addressed whether assumptions regarding flexible units from those scenarios,

against the background of the increasing dominance of REN, withstand the future supply task from a technical

point of view. Furthermore, on the basis of this model, more well-founded evaluations of business cases such as

gas power plants, storage facilities, Power2Gas assets, etc. can be carried out. In this model, the electrical load is

fixed. However, the increasing penetration of smart homes, which act as prosumers, is steadily increasing. Houses

are no longer just rigidly feeding their decentralised photovoltaic feed-in into the grid, but are also optimizing

their own consumption using electrical strorages and flexible heating systems. The photovoltaic’s forecasting error

influences the maximization of the individual self-consumption for each of those smart homes. Hence, in a systemic

perspective the aggregated residual load of smart homes has an influence on the electrical load. Thus, an influence

of the photovoltaic forecasting error on the load forecasting error can be derived, which must be quantified and

evaluated. Additionally, the presented decomposition approach is currently not capable of considering integer ID

variables, since the dual decision variables of the subproblem, which only exist for linear programs, are necessary

in the cut generation. Thus it is not possible to make decisions regarding a unit’s start-up (for certain scenarios and

only) in the ID market. Due to computational limits the closed approach can not be applied for this case so that

further approaches capable of generating cuts in integer subproblems could be integrated [53].
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