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Abstract

Due to structural changes in the electricity market like the ongoing integration of renewable energy technolo-
gies, various aspects in energy planning problems become increasingly volatile. In recent years new methods
concerning the integration of stochastic components in energy planning models have become popular. Whenever
renewable energy technologies are integrated in energy models, energy managers have to be concerned if these
energy assets can be considered as reliable power sources. This paper explicitly considers these issues related
to system reliability and proposes a stochastic optimization framework to integrate the estimation of the reliable
demand that can be provided by implementing the methodology of reliability based design optimization. The
basic building block of this stochastic framework, covering the integration of renewable energy technologies is
discussed in detail and a short outlook of possible extensions is given. Within the scope of the model, different
approaches of modeling the total energy that can be supplied from an energy park based on probabilistic descrip-
tions (Weibull, Exponential, Beta and Log-normal) are compared to the assumption of Gaussian distributions,
which is considered as the benchmark model. This paper gives evidence, that modeling the power available via
adapted probability density functions can outperform the benchmark model in the regime of higher levels of
reliability.
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1 Introduction

The integration of renewable energy sources (RES) in energy planning problems has led to an increased focus

to incorporate risk management approaches in energy strategies. Besides the compelling advantages of RES

technologies resulting in decreased pollution and simultaneously presenting economic feasible solutions a major

problem remaining is, if RES can be considered as reliable power sources. Uncertainty in the output is often

addressed to be the main problem associated with RES (Hemmati et al., 2017). The task of supplying a predefined

load with high reliability including RES in an economic manner seems challenging and is in fact a key factor

in energy planning problems (Monishaa et al., 2013). Energy planners need to be aware of the energy assets’

capability to provide a certain supply. The difficulty in accordance with this problem is that the power available

from RES fluctuates due to variations in the weather conditions (Delucchi and Jacobson, 2011). With a focus

towards the two most used self-generating technologies nowadays, wind speed affects the power output of wind

turbines and solar irradiance affects the power output of photovoltaic systems, (Nojavan et al., 2019). In energy

planning problems, an approach to deal with these issues is given by imposing the relevant variables included in

the model to be volatile. This stochasticity can be imposed on both supply and demand side and consequently

results in a paradigm shift from deterministic to stochastic supply-demand constraints. This point of view has the

benefit of explicitly addressing problems associated with risk management in energy strategies but opens up new

problems ranging from computational complexity of the optimization problem to specific modeling aspects.

Recently, various authors (Yu et al., 2009; Monishaa et al., 2013; Beraldi et al., 2017b,a; Hemmati et al., 2017;

Garifi et al., 2018; Huang et al., 2018; Huo et al., 2019; Ondra and Hilscher, 2019) addressed the stochasticity in

energy planning models by imposing the reliability based chance constraint paradigm, which was introduced in

(Charnes and Cooper, 1959). From this point of view, the stochastic supply-demand constraint has to be valid with

a certain probability which is expressed in terms of the level of reliability. This ex-ante chosen level of reliability

reflects the energy manager’s attitude towards risk, which can be directly incorporated in the model formulation.

The reliability based design optimization (RBDO) methodology is valuable because it has a dual goal, namely

guaranteeing performance as well as system reliability under uncertainty (Geletu et al., 2013).

A stochastic formulation of the supply-demand constraint including a reliability level has been used recently

in several papers covering a wide range of problems. Beraldi et al. (2017b) considered the procurement problem

under reliability constraints with uncertainty on the demand-side. This contribution was extended by the authors

(Beraldi et al., 2017a) who included also volatile market aspects via stochastic purchasing and selling prices.

Monishaa et al. (2013) investigated cost effects of the generation expansion problem in a probabilistic constraint

regime, where the power system loads were assumed to be Gaussian. Yu et al. (2009) considered a transmission

network expansion planning problem including uncertainties on the supply side of wind turbine generators, where



the wind speed was modeled via a Weibull distribution and a linearization of the power curve was used. Huo

et al. (2019) included reliability chance constraints in an energy hub optimization problem, where the authors

considered RES and modeled solar energy via Beta distribution and wind power via Weibull distribution. The

solution of the chance constrained problem was approximated using the Cornish-Fisher expansion to estimate

the resulting quantiles based on the quantiles of a normal distribution. Garifi et al. (2018) applied a chance

constrained formulation to the demand response problem in a home energy management system, with uncertainty

on the supply side. The authors modeled photovoltaic and wind power available by weather forecasts, where

the prediction errors were assumed to be normally distributed. Hemmati et al. (2017) incorporated stochastic

planning to energy storage systems, where solar and wind power was modeled based on Gaussian distributions.

Huang et al. (2018) used a reliability chance constrained formulation of a demand response application, where

the demand response errors were assumed to be normally distributed. Ondra and Hilscher (2019) extended the

integrated portfolio investment model of Delarue et al. (2011) in the RBDO context to quantify risk diversification

effects in renewable energy technologies.

Generally, a crucial point in the design of stochastic energy models is the choice of the underlying probabilis-

tic structure of the stochastic variables. Various papers assume that the random variables are Gaussian. Using

stochastic models which are not adapted to the problem, or ignoring the stochastic character involved in the model

may lead to procurement plans which are infeasible on the one hand or overly expensive on the other hand (Be-

raldi et al., 2017a). A question remaining is if Gaussian probabilities can be considered as an approximation or

are too simplistic in applications. Other choices than Gaussian probability density functions however, can result

in immoderate technical problems in the optimization models. Flexible approaches which deal with reliability

constraints are needed to account for a general framework to integrate RES in energy planning problems.

The aim of the paper is twofold. Firstly, this paper proposes a general framework to incorporate reliability

constraints within the formulation of energy planning problems including RES, by using the RBDO approach.

Frequently, issues related to system reliability involves the estimation of quantiles associated with the probability

of the power from energy assets. A particular focus is put on the the model’s fundamental building block which

deals with this estimation by proposing a proactive stochastic planning model to evaluate the maximum reliable

supply which can be provided by RES within the planning period of one year. The risk parameter accounting

for reliability itself is specified within the methodology of RBDO. The flexibility of this approach is illustrated

by means of two examples. This underlines the modular character of the framework and shows that this the

framework can be easily adapted to various problems in stochastic energy planning. Secondly, we give evidence

that adapted probabilistic formulations can outperform the case of Gaussian energy assets. Therefore, the model is

demonstrated in a use case with photovoltaic power sources as well as wind turbine generators. Different models

(Weibull, Exponential, Beta and Log-normal) for wind and solar power available are provided and validated in a



backtest simulation compared to the benchmark model of Gaussian energy assets, which shows that the framework

introduced is valuable.

The rest of the paper is organized as follows. Section 2 introduces the construction, illustrates further examples

and deals with the calibration of the model parameters. The stochastic optimization problem is solved analytically

for the benchmark model and is numerically approximated for the other underlying probability distributions.

Section 3 reports on the computational experiments and validates the models in a backtest simulation. Section 4

gives a final conclusion of the results.

2 The energy model in the context of reliability engineering

We formulate the stochastic energy model to estimate the total reliable supply which can be provided by the RES

of a wind generator and photovoltaic panels. The model is demonstrated in the use case, where the installed

capacities of the energy assets are κ1 � 1 MW for wind power and κ2 � 1 MWp for solar power, respectively. The

notion of a reliable demand is specified in the RBDO approach and quantified by the level of reliability χ P r0.5,1q.

In the RBDO setting, the constraint specifying the supply-demand relation is given by the supply shortage function

i.e. the residual of the secured supply st and the power Pit available from the i-th energy asset at decision time

t P T . Here T denotes the equidistant set of decision points, divided into elementary weekly periods.

The regime of a negative supply-demand imbalance denotes the case, where more power is available to satisfy

the demand, whereas the regime of a positive power gap denotes the case of less power than needed being available.

Within the uncertain future of the amount of power that can be supplied, this constraint is considered as a stochastic

supply-demand constraint. In the energy model, the power available from a specific energy asset is modeled as

a random variable with an underlying probability distribution. The probability constraint can be referred to the

"continuous probability density version" to compute the loss of load probability (LOLP), which can be used as a

statistical metric to measure critical shortages in energy planning problems.

2.1 Model construction

The main focus in this paper is put on the construction of the framework’s basic building block which integrates

renewable energy technologies and addresses problems related to their ability to provide a reliable supply. With

this framework’s fundamental module, various problems can be easily set up and adapted. Since all these extension

essentially rely on the on the properties related to the basic model, the latter is studied in detail. The basic

energy manager’s problem considered is to maximize the performance of the renewable energy technologies, by

maximizing the reliable power that can be supplied subject to the stochastic chance constraint which has to hold

true with an ex-ante chosen level of reliability χ . This model specific parameter acts as a threshold on the supply



shortage function and constitutes the LOLP. Simultaneously, the reliability parameter reflects upon the energy

planner’s attitude towards risk ε � 1� χ . From a statistical point of of view, the probability constraint imposes a

limit on the power that can by supplied, by requiring that st is the ε-quantile of the distribution of the total power

available from both energy assets. Naturally, higher levels of system reliability or lower levels of risk respectively,

decreases the secured supply. The secured supply is assumed to be constant on the supported intervals of the time

grid. This mathematical formulation of the chance constrained problem (CCP), given by Eq.(1).

CCP: max
stPR�

st , s.t., Prtst �P1t �P2t ¤ 0u ¥ χ, @t P T. (1)

As there are also other ways to estimate the quantile of the distribution, we emphasize the flexibility of this

approach since the model can be expanded in many ways to account for a great variety of problems in stochastic

procurement planning, where other design frameworks reach their limit. This can be the case, whenever decision

variables are included in the supply-demand constraint and thereby change the probability density function of the

total power available. We give an outline, how the CCP can be easily adapted to other problems of interest. For the

sake of an example consider the problem of optimally allocating a dispatchable supply security P3t � c over the

planning period, where λt denotes the fraction of the power used at point of time t. The mathematical formulation

of this chance constrained problem can easily adapted from (1) and is given by

CCP1: max
st ,λtPR�

¸
tPT

st , s.t., Prtst �P1t �P2t �λtc ¤ 0u ¥ χ,

¸
tPT

λt ¤ 1, s� ¤ st ¤ s�, @t P T.
(2)

Another example covering the generation expansion problem, is to determine the minimal costs ξ p needed to

satisfy a prespecified demand d with a certain reliability, where ξ represents the change in capacity of solar panels

and p denotes the associated costs. Again the mathematical formulation is given by adopting the fundamental

CCP to

CCP2: min
ξPR�

ξ p, s.t., Prtd�P1t �ξ P2t ¤ 0u ¥ χ, ξ ¥ 1, @t P T. (3)

These extensions (2) and (3), which are briefly discussed for the sake of completeness in the appendix, essentially

rely on the properties related to the basic model (1). Therefore this paper focuses on the study of the basic model

(1).



0 2 4 6 8 10 12
t

1.6

1.8

2.0

2.2

2.4
α t

(a)

0 2 4 6 8 10 12
t

7.5

8.0

8.5

9.0

9.5

10.0

β t
[m
/

s]

(b)

0 2 4 6 8 10 12
t

0

100

200

300

400

500

1/
λ t

[W
/

m
2 ]

(c)

0 2 4 6 8 10 12
t

0.6

0.7

0.8

0.9

1.0

p t

(d)

0 2 4 6 8 10 12
t

0

2

4

6

8

10

q t

(e)

0 2 4 6 8 10 12
t

3.5

4.0

4.5

5.0

5.5

6.0

6.5

µ t

( f )

0 2 4 6 8 10 12
t

0.6

0.8

1.0

σ t

(g)

0 2 4 6 8 10 12
t

0.8

1.0

1.2

1.4

1.6

α t

(h)

0 2 4 6 8 10 12
t

0

100

200

300

400

500

600

β t
[W
/m

2 ]

(i)

Figure 1: Plot (a) shows the shape parameter αt and (b) the scale parameter βt of the Weibull distribution to fit
the windspeed over the time period of one year. Concerning wind speed, the R-package Riem has been
used, which provides windspeed from the ASOS wind station Schwechat, AUT in the time span from
01.01.2012-31.12.2016 in the daytime. Plots (c)-(i) show the parameters of different distributions used
to fit the solar irradiance. In (c), the inverse rate parameter of the exponential distribution is given, (d)
and (e) represent the parameters of a Beta distribution, (f) and (g) are the parameters of a log-normal
distribution and (h) and (i) are the shape and scale parameter of the Weibull distribution. The data are
from CAMS and collected vie the R-package CamsRad in the same time span.

2.2 Model calibration

Wind & Solar Power. Wind speed is frequently modeled using a Weibull distribution with shape parameter αt

and scale parameter βt . The wind speed following this distributions is then mapped to the power of wind turbine

generators via the linearized power curve of the form

P1pvq �

$''''''&
''''''%

0, for v ¤ vCI and v ¡ vCO

κ1
vRO�vCI

pv� vCIq, for vCI ¤ v ¤ vRO

κ1, for vRO ¤ v ¤ vCO,

(4)

where vCI � 3m{s,vRO � 11m{s,vCO � 25m{s denote the cut-in-speed, rated-output-speed, cut-out-speed and κ1

denotes the installed respectively. The power available from solar panels is given by P2 � I{I1000κ2, where I

denotes the solar irradiance, I1000 � 1kW{m2 denotes the reference irradiance and κ2 is the installed capacity of



Table 1: Estimation of the parameters of the different models used in the simulation experiments, for both first and
second order Fourier Series approximation.

Solar Power/Irradiance Wind Power/Speed

(M0) (M1) (M2) (M3) (M4) (M0) (M1)-(M4)

Var. µP
t σP

t αt βt 1{λt pt qt µt σt µP
t σP

t αt βt

a0 261 196 1.24 283 261 -0.81 3.66 5.1 0.73 522 196 1.94 8.75
a1 -181 37.5 -0.35 -208 -181 -0.13 3.36 -0.97 0.15 37.5 37.5 -0.15 0.64
a2 -3.7 -17.9 0 -0.55 -4 0.04 1.28 -0.15 0 -2.4 -17.9 -0.02 -0.05
b1 90 47.1 0.18 104 90 0.07 -1.45 0.47 -0.08 63 47.1 0.15 0.83
b2 1.4 12.8 0 -0.62 1 0.03 -1.07 0.18 -0.02 2.1 12.8 -0.02 0.11

RMSE
pN � 1q 7.67 15.75 0.04 9.14 7.67 0.04 1.30 0.17 0.01 35.99 10 0.13 0.42
pN � 2q 7.13 2.41 0.02 9.12 7.13 0.02 0.54 0.04 0.01 35.92 6.8 0.11 0.41

the solar panels. When it comes to modeling the stochastic character of solar irradiance, various models besides

a normal distribution are used in the literature. The most recognized being: Weibull, Exponential, Beta and

Log-normal distributions. In this paper different approaches to model the solar power available in the energy

model are considered. The models using a Weibull, Exponential, Beta and Log-Normal distributions to model

the solar irradiance are denoted by M1, M2, M3 and M4, respectively. In each of the models M1-M4, except

for the benchmark model, wind speed is assumed to be Weibull distributed. The benchmark model M0 itself is

given by Gaussian distributions of both power assets available. Historical weather data are fitted according to the

underlying distribution via the moment matching approach to estimate the different parameters.

Dynamic effects in the parameters. To account for seasonal effects in the stochastic energy model, the dynamic

evolution in the parameters is interpolated by a Fourier series of the form

θt � a0�
N1¸

n�1

an cos
�nπ

52
t
	
�bn sin

�nπ

52
t
	
, (5)

where N1 is the order of the Fourier approximation, θt represents a parameter of the distributions and t is the point

of time, given in weeks. In the analysis, we approximate the seasonal character of the parameters by first and

second order Fourier approximations. The root mean squared error (RMSE) is used to evaluate the goodness of fit

of the Fourier approximation. The results of the parameter fits are given in Tab.1.

2.3 Solution of the energy model

The benchmark model is constituted by the assumption of individual Gaussian distributions Pit �Npµit ,σitq of both

wind pi � 1q and solar pi � 2q power available. The probability constraint of the stochastic optimization problem



(1) can be written as an analytic inequality in terms of the χ-quantile zχ of the standard normal distribution, which

has to hold true in every point of time during the planning horizon

st ¤ µt �σtzχ . (6)

Here, µt and σt denote the mean and the standard deviation of the total power available (i.e. the sum of wind

and solar energy assets), which are given by the aggregation law of normal distributions. In the light of the

maximization problem, the inequality is sharp and is given by the expected power available subtracted by the term

σtzχ which accounts for risk correction, depending on the energy managers risk aversion. Consequently, this risk

correction which decreases the secured supply is high, whenever either the standard deviation of the total power

available or the level of reliability is high. It is due to the fact, that the feasible region is restricted to positive

values to account for a valuable proactive planning strategy, that the maximal secured supply is given by

st � maxt0,µt �σtzχu. (7)

The restriction on the positivity of the solution imposes an upper bound on the model parameter of the achievable

level of reliability χ� and can be rewritten in terms of the coefficient of variation χ� ¤Φp1{cvq, where Φ denotes

the cumulative distribution function of the standard normal distribution. High values of cv denotes the regime

of more unreliable planning strategies due to the high variance. Low values of cv result in situations where the

maximum level of reliability is increasing tremendously.

In case the distributions of the the power available are not given by a Gaussians, the chance constraint in Eq.(1)

cannot generally be written in closed form. The solution is computed numerically, by applying probabilistic

relaxation techniques to the original problem which are in line with robustness against the vast majority of possible

scenarios, see (Calafiore and Campi, 2005). In this sample approach, the original chance constrained problem (1)

is transferred to the associated sample convex program SCPN , where the solution is randomized via sampling N

constraints

SCPN : max
stPR�

st s.t,

st �Ppkq1t �Ppkq2t ¤ 0, @t P T, k � 1, . . . ,N.

(8)

In this expression, tPp1q1t , . . . ,PpNq1t u denotes the samples drawn from the wind distribution and tPp1q2t , . . . ,PpNq2t u

denotes the samples drawn from the solar distribution, respectively. Calafiore and Campi (2005) provided a

feasibility result that the scenario solution of the associated sampled program (8) is then feasible for the vast

majority of unseen constraints, given that the sample size is specifically large, depending on the level of reliability.



Calafiore (2010) considered this fact as a generalization property in the learning-theoretic sense based on a training

set of sampled constraints. In the subsequent work of Calafiore and Campi (2006) this sample size has been refined,

as well as new sample and discard algorithms have been introduced in Campi and Garatti (2011), which are applied

to solve to construct the associated SCPN (8). This approach is highly suitable to applications considering general

probability distributions, since it holds true irrespective of the distribution.

3 Discussion of the computational experiments

This section reports on the results of the different modeling approaches to predict the maximum reliable supply

that can be provided by RES technologies and studies how dynamic peculiarities of specific models aggregate to

a cumulative effect over the planning horizon. In case of the benchmark model M0 using Gaussian energy assets,

the analytic solution for every point in time is given by (7) and in the other cases concerning the models M1-

M4 assuming different probability distributions for the solar power, the solution is approximated via the sample

approach (8). These stochastic models are compared with the optimal ex-post solution, which is calibrated using

the weather data of 2017. A retrospective validation based on a backtest simulation, where the different models are

reviewed on their capability to reproduce the optimal ex-post solution, is conducted. To measure the performance

in the validation process, the coefficient of variation of the root mean square error CV(RMSE) (for a discussion of

different validation measures in energy models, see (Aman et al., 2014)) is used

CV pRMSEq �
1
ō

c°n
i�1ppi�oiq2

n
, (9)

where ō is the mean of the n observed values, pi is the model predicted value. To study dynamic effects ac-

cording to the different models, the results of the simulations carried out for each point in the planning period

for the second order Fourier approximations are given in Fig.2(a)-(e) for all levels of reliability considered,

χ P t0.5,0.6,0.7,0.8,0.9,0.92,0.94u. The plot (a) shows the maximal secured supply at each point in time subject

to the specified level of reliability for the benchmark model of both simulated and analytic solution. This also

illustrates the applicability of the simulation approach, as can be seen by comparing the analytic solution with the

simulated version using the sample approach in (8). The simulation provides a good approximation of the analytic

solution, with an average normalized CV(RMSE) of approximately 4% over all reliabiliy levels considered. The

solution for the reliability level of χ � 0.5 corresponds to the mean total energy of the optimal energy strategy,

since the term accounting for risk correction equates to zero and does not affect the solution, see Eq.(7).

All of the models considered in Fig.2(a)-(e) show a distinct decrease of the supplied power with increasing levels

of reliability. This behavior is reflected in every model, the magnitude of the effect however, varies according to
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Figure 2: (a)-(e) show the total secured supply over one year considering a ex-ante level of reliability, for the
stochastic models. (g) and (h) show the cumulative effect of the total secured supply in one year by the
different models for both first and second order parameter fit.

the different models.

Model M3 (Fig.2(d)) assuming a Beta distribution of the solar power, shows a slightly different dynamic struc-

ture compared to the other models. It is a peculiarity of this model to predict higher amounts of solar energy in the

summer months compared to the other models. This results in a higher predicted secured supply by solar energy

assets in the summer time, as it can be seen in the plot by an increased crest of the wave.

To evaluate how these dynamic peculiarities aggregate to a cummulative effect in the planning period, we con-

sider the total energy that can be supplied by an aggregation in the time dimension over the planning period. This

total energy supply within the planning period of one year, denoted by s, carries over the structural dependence on

the reliability parameter and hence also varies according to the energy manager’s attitude towards risk.

The nonlinear influence of the energy manager’s level of reliability on the total secured supply in the benchmark

model becomes evident in the functional form in Eq.(7). A plot of the total secured supply over the planning period

in case of the other models based on the simulations carried out for the first and order Fourier approximation, is



Table 2: Results of the regression analysis for the first and second order fit of the parameters. The optimal ex-post
strategy is given for the year 2017.

Model

Coeff. (M0) (M1) (M2) (M3) (M4) (2017)

ci rGWhs - 6.02 6.08 6.10 5.89 6.16
(0.04) (0.04) (0.08) (0.01) (0.17)

γi rGWhs - -5.74 -5.95 -5.85 -5.55 -5.89
(0.06) (0.05) (0.11) (0.21) (0.22)

In sample:
mean CV(RMSE) r%s 44.7 43.0 43.2 45.8 44.2 -

Out of sample:
mean CV(RMSE) r%s 40.3 37.6 39.3 37.4 38.5 -

Note: standard errors in parenthesis
Significance Levels: all regression results are significant, p<0.001

illustrated in Fig.2(f) and (g). This effect is studied in a regression model di � ci� γiχ�εi, where i represents the

model index, see Tab.2.

The slope coefficient γi can be interpreted as the "marginal costs of risk", i.e. the amount of energy in one year

that is supplied less, when the energy manager’s attitude towards risk increases by a small amount. The negativity

of this parameter indeed shows that the total energy is decreasing when the energy manager is more risk averse.

The magnitude of this effect varies according to the model choice and is the highest in model M2 which estimates

approximately 5.95 GWh less in one year when the risk parameter increases incrementally.

A retrospective validation of the model is carried out by analyzing the goodness of fit in a backtest simulation,

where the performance criterion is specified as the CV(RMSE). The models are evaluated according to their ability

to reproduce the optimal ex-post strategy of the year 2017 and compared with the stochastic energy models. The

mean CV(RMSE) for all reliability levels considered for each model is given in Tab.2. Within the universe of

stochastic models, the benchmark model using Gaussian energy assets is outperformed by all models M1-M4

concerning the out of sample validation, wheres the benchmark model is outperformed by the models M1, M2 and

M4 concerning the in-sample validation.

Considering the model M3, the Beta distribution works best to estimate the secured supply in a stochastic

setting and reduces the CV(RMSE) of the benchmark model by approximately 8%. Gaussian energy assets can be

considered as a simplification in various model aspects but can lack in an accurate description of reality, ranging

from negatively supported probability density functions to symmetric and skewless descriptions of the power

available of the energy assets.

This result is further investigated, by comparing the models M1-M4 with the benchmark model in terms of a

one-sided two-sample test. The models are tested on the mean value of the associated CVpRMSEq compared to
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Figure 3: The results of the test are given for all models and levels of reliability considered. Values below zero
denotes significant results.

the benchmark solution, µMi   µM0, by bootstrapping n � 10000 samples. The test statistic

Zi �
µ̂Mi� µ̂M0b

σ̂2
Mi{n� σ̂2

M0{n

is approximated normally distributed under H0, where the significance level is chosen to be α � 0.05. The results

of the test shows, that there is a difference in the performance of the models when the different levels of reliability

are taken into account. While there is no evidence that the models M1-M4 perform better in the regime of low

levels of reliability χ À 0.8, it can be observed that all models M1-M4 perform better in the regime of higher

levels of reliability χ Á 0.8. This can be seen in Fig.3 as the value Zi � z1�α drops below zero which denotes

significance, whenever the level of reliability is specifically high. These values however, are typically used in the

design of reliable systems.

4 Conclusion

The aim of this paper is twofold. First of all, we introduce the framework of a stochastic planning model which

incorporates the estimation of the supply that can be provided from RES, with a special focus on the security of

supply, via the RBDO methodology. This can be considered as the basic building block for a modular framework

which introduces stochastic supply planning of renewable energy technologies. An advantage of this formulation

lies in the fact that it is formulated in terms of an optimization problem and can be incorporated in other widely

used optimization problems. The basic model is illustrated by means of two applications in order to show the

flexibility, which makes this framework adaptable to a great variety of stochastic planning problems. Not only

variable load profiles of RES but also issues related to the unpredictability of these technologies can be considered.

The supply-demand constraint is considered as a stochastic inequality which has to be true with at least a certain



ex-ante chosen level of reliability. This reliability parameter reflects upon the energy manager’s attitude towards

risk and acts a threshold to determine the optimal strategy. Numerical solutions are obtained using methods

of stochastic optimization to solve the RBDO problem based on scenario approximation and scenario reduction

techniques. The proposed framework can be considered as a flexible planning tool which is able to supplement

proactive managerial decisions concerning stochastic energy planning problems including RES. The application

of the sample approach makes the model also accessible to general distributions.

The second goal of this paper is to compare different ways to model the power available (via Weibull, Expo-

nential, Beta and Log-normal distributions) in the energy model. A retrospective validation based on a backtest

simulation of the model’s ability to reproduce the ex-post optimal strategy of the following year is performed. The

results of the backtest simulation shows that the benchmark model of Gaussian distributions is outperformed by

the models using a non-normal distribution to model the power available which reduce the average coefficient of

variation of the root mean squared error by approximately 8%. Further investigation shows, that the performance

of the model depends on the ex-ante level of reliability. The benchmark model is outperformed by all other mod-

els in the regime of risk averse energy managers with a level of reliability χ Á 0.8. This gives raise to the fact,

that Gaussian distributions can be considered as an approximation having the advantage of lower computational

complexity, but can lack in an accurate description of reality. This reliability levels however, are typical values

considered in RBDO problems, which establishes the practical use of the framework introduced.
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Appendix

Results of the Examples CCP1 and CCP2
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Figure 4: Figure (a) shows the solution of the first example CCP1 and (b) shows the solution for CCP2 for varying
levels of reliability.

The solutions of the previously discussed problems CCP1 and CCP2 are given in Fig.4(a) and (b), respectively.

These examples illustrate the approach, numerical values should be interpreted with care. Plot (a) shows the opti-

mal use from a power reserve such that the RES can provide the maximum supply under the reliability constraint

and an upper and lower power bound of the secured supply. Plot (b) considers the expansion problem to find the

solar capacities which should be additionally installed to satisfy athe demand with certain reliability, formulated in

terms of minimizing the costs. The amount to install depends on the energy manager’s level of reliability specified

in the model. The model is simulated for various parameters of χ to find the level where the energy manager

considers to install new capacities.


