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Abstract 

Environmental pressures already exceeded earth’s system resilience. The 
energy sector, as one of the main contributors, therefore urgently calls for the 
design of sustainable solutions to meet energy security and environmental goals at 
the same time. Optimising energy system models allow to balance supply and 
demand for each time step and to simultaneously minimize costs by linear 
programming. Life Cycle Assessment provides a comprehensive tool to analyse 
environmental burdens of energy systems and services. In the current state Energy 
system models focus on cost optimisation and Life Cycle Assessment is meanwhile 
limited to a post assessment of specific systems. Out of this requirements we 
coupled a linear energy optimisation model with parametrised Life Cycle 
Assessments to achieve an integrated optimisation. The developed tool is used to 
analyse an expansion planning of a grid-connected decentralised residential energy 
system including households, photovoltaics, wind power, battery storage and 
combined heat and power. The optimisation model minimises both, total system 
costs and 18 Life Cycle Impact Assessment indicators. Moreover, both a single 
score and an economic-environmental objective is applied. Single score indicators 
have not been found to be recommendable for the assessment of energy systems by 
scientific standard. Our results also show that total system costs do not represent a 
sufficient objective for the optimisation of energy systems if environmental 
sustainability is demanded. Wind power with battery storage and combined heat 
and power show advantages in most of the impact categories. However, with the 
implementation of these technologies the total system costs increase significantly.  

 

1 Introduction  
On global level, particularly effects on climate change, biosphere integrity and biochemical flows, 

already exceeded the limits of earth’s resilience (Steffen et al., 2015). Energy related activities are the 
worldwide biggest contributor to environmental pressures such as climate change, particulate matter and 
NOx emissions (IPCC, 2014; Umweltbundesamt, 2018a, 2018b). Consequently the energy sector demands 
for sustainable solutions to meet energy security and the preservation of earth system’s stability 
simultaneously. Following the three dimensional perspective of sustainability, the Sustainable 
Development Goals (United Nations, 2018) define affordable, clean energy and climate action as main 



 

page 2 of 20 

targets for the energy sector. At this juncture the development of scientific tools which support integrated 
economic, environmental and ideally social decision-making procedures is postulated.  

Energy system models (ESMs) are common tools to represent a real world system and to assist 
decision making. ESMs allow to balance supply and demand for every time step and to simultaneously 
minimise system costs. Thus ESMs are able to address two main goals of the energy policy triangle 
(Doukas et al., 2019; Schiffer, 2019) (i) security of supply and (ii) affordability. The third goal, (iii) 
sustainability is increasingly required by national and international energy planning (BMWi, 2010; 
European Commission, 2010) and therefore introduced into ESMs by the implementation of additional 
constraints, e.g. a limit of Greenhouse Gas (GHG) emissions allowed.  

The aspired reduction of GHG emissions is usually connected to a shift to renewable energies such 
as solar and wind power. Because these renewables are available only intermittently, they increase the 
complexity to ensure energy security also in phases without wind or solar irradiance. Out of this reason 
renewables are implemented together with battery storage, Power-to-X1 or biomass driven technologies 
which consequently increase the modelling effort. Furthermore, renewable energies and battery storages 
incorporate environmental impacts other than climate change. Thus, target conflicts which need to be 
acknowledged during the planning procedures and therefore within ESMs arise. In environmental 
sciences Life Cycle Assessment (LCA) has been established since the 1970s and 1980s as a standardised 
method to assess and analyse environmental impacts. LCA allows to identify environmental aspects and 
potential impacts of products or services throughout a product’s life cycle. Hence for energy generation it 
enables to account for the whole life cycle impacts of i.a. fuel, facility and infrastructure production. 
(Klöpffer and Grahl, 2014) To address the sustainability dimension in energy planning an integration of 
LCA into ESM is intended. 

The aim of this paper is to introduce a generic expansion planning tool with a high technical and 
timely resolution (bottom-up). The tool allows to investigate goal conflicts by the implementation of 
renewables and battery storage. First results are presented and assist the deduction of further research 
needs. In order to achieve this, the paper is outlined as follows: the next sections gives background 
information on ESMs and LCA before section 3 presents the developed tool and the assumptions made.  
Single indicator optimisations (total system costs and 18 environmental indicators) as well as multi-
criteria optimisation deliver energy system compositions which are presented in chapter 4. A sensitivity 
analysis for crucial assumptions is used as basis for the discussion in chapter 5 considering 
methodological limitations and results. Chapter 5 draws conclusions and gives an outlook on further 
research activities. 

 

2 Energy System Modelling and Life Cycle Assessment 
ESMs can be distributed into power flow models for electricity transmission network operation and 

planning, economic dispatch models for capacity planning and unit commitment models for power plant 
utilization. They can be large-scale transnational models (top-down), based on economic equilibrium 
models or technology-specific local models (bottom-up). Many models integrate sector coupling of 
electricity, heat and mobility. The models’ methodology is generally didvided into three main categories 
simulation, optimisation and equilibrium models. Simulation models, based on specified equations and 

                                                      

1 Power-to-X (PtX) as generic term for technologies which transform electrical energy to several energy carriers, 
such as gas (Power-to-Gas) or liquids (Power-to-Liquid) 
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characteristics, allow to test various system topologies, developments and scenarios. To optimise a 
resulting quantity of an energy system, optimisation models use an objective function which is either 
maximised or minimised (e.g. minimising of the total system costs). The majority of optimisation models 
uses a linear programming (LP) approach, further if variables of the LP are set to be integer this leads to a 
mixed-integer linear programming (MILP). Non-linear models are used if the objective function or 
constraints added to the energy system are non-linear. Heuristic optimisation models do not necessarily 
find the optimum solution but have further advantages such as improved calculation time and the 
possibility of a multi-objective optimisation (Jones et al., 2002; Ren et al., 2018). Equilibrium models 
determine the equilibrium of the energy sector or certain energy markets. (Biggar and Hesamzadeh, 2014; 
Hilpert et al., 2018; Ringkjøb et al., 2018; Wood et al., 2013) 

Most ESMs use costs as determining factor for the analysis of different scenarios, but more and 
more models include GHG emissions and pollutants such as CO2, NOX, SOX or CH4 as constraints to 
meet environmental policy requirements or goals. However, decision support for a sustainable 
development demands for the integration of new dimensions. This integration needs to go beyond cost 
optimisation and environmental constraints and requires to consider a sustainability assessment of the 
whole energy supply chain. For this purpose Life Cycle Assessment (LCA) is increasingly implemented 
into decision making methods (Luglietti et al., 2016; Means and Guggemos, 2015; Meyer and 
Upadhyayula, 2014; Strantzali and Aravossis, 2016; Yilmaz et al., 2015; Zhang et al., 2016) and as a core 
element for environmental policies (European Parliament and Council of the European Union, 2009; 
United States Environmental Protection Agency). Within an LCA the whole life cycle is analysed from 
extraction of the raw materials to processing, usage, recycling and disposal of the materials. The 
international norms ISO 14040 and ISO 14044 standardise LCA initiating a comparable and reproducible 
procedure (International Standard Organisation, 2009, 2006). LCA organises its input and output 
(elementary) flows in the so called Life Cycle Inventory (LCI) that lists materials and emissions. The 
items of the LCI are aggregated and characterized following the Life Cycle Impact Assessment (LCIA) to 
estimate the final effect of each flow in the respective impact category. Impact categories represent the 
environmental intervention and are differentiated by the point of assessment on the underlying impact 
pathway. Midpoint impact categories such as CML (Bruijn et al., 2004), ReCiPe2 (Goedkoop et al., 
2013), ILCD/EF (Fazio et al., 2018; Hauschild et al., 2011) are located at an intermediate point on the 
impact pathway. Exemplary impact categories on midpoint level are i.a. climate change, water use and 
fossil resource depletion. In general, midpoint impact categories provide a higher certainty but a lower 
force of statement compared to endpoint impact categories. Hence, in the environmental assessment of 
energy systems, a LCIA at midpoint level delivers a comprehensive but partly ambiguous result array. 
Endpoint methods indicate stressors which lay at the endpoint of the impact pathway (e.g. damage to 
human health, damage to ecosystems) and therefore are able to focus on less impact indicators or deliver a 
single score e.g. by aggregation of various indicators. Though, weighting and aggregation procedures can 
distort the initial results and therefore are not compliant to DIN ISO standards in LCA. Due to their 
distance from the original impact, endpoint methods such as Eco-indicator (Goedkoop and Spriensma, 
2000), LIME3 (Itsubo and Inaba, 2005) and EPS (Steen, 1999) don’t reach a sufficient level of scientific 
quality and therefore are not recommended for LCA practice (Hauschild et al., 2013). Similarly the 
application of external costs as endpoint indicator is restricted and not recommended to substitute 

                                                      

2 ReCiPe is also available as endpoint method (derived from the midpoint assessment) but is commonly used on 
the midpoint level. 

3 LIME includes midpoint categories which are derived from the endpoint methodology. 
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commonly used midpoint indicators (Lazar and Tietze, 2019). Thus, other approaches prefer to attach 
weighting and normalisation factors following a comprehensive midpoint assessment to ensure both 
scientific quality and communicability (Huijbregts et al., 2016). One approach in this field is the use of  
weighting and normalisation factors based on global emission estimations published by the European 
Commision’s Joint Research Centre (JRC) (Huppes and van Oers, 2011; Sala et al., 2017). 

However, in addition to the challenges in the impact assessment, LCAs are limited to a post 
evaluation of specific and static systems. The need for an a priori integration of LCA into energy 
optimisation modelling is recurrently mentioned in literature and frameworks as well as models have been 
developed (Arvesen et al., 2018; Azapagic and Clift, 1999; Carapellucci and Giordano, 2012; Onat et al., 
2016; Pauliuk et al., 2017; Yue et al., 2016; Zhang et al., 2016). Focussing on electricity systems 
Azapagic et al. (2016) developed a decision support framework (DESIRES) integrating economic, 
environmental and social sustainability. Later on, they coupled sustainability assessment, optimisation 
and multi-attribute decision analysis and applied it on the electricity generation in the UK and Turkey 
(Atilgan and Azapagic, 2016). Moreover, from a model coupling perspective, García-Gusano et al. 
integrate life cycle indicators into energy optimisation models on the case of the Norwegian electricity 
system. They focus on the commonly used TIMES model. Their results demonstrate that in the 
Norwegian case most of the impacts are linked to the installation of new capacity. Rauner & Budzinski 
(2017) include life cycle based sustainability assessment into an energy system model, considering all 
relevant products and processes of the global supply chain. They furthermore categorize coupled models, 
following the definition of Hwang and Masud (1979), into a priori, interactive or a posteriori methods in 
the context of including life cycle based data into the energy system optimisation model. Rauner and 
Budzinski (2017) state that only the a posteriori method calculates the full spectrum of efficient solutions, 
which allows the decision maker to select the most preferred solution while being aware of the trade-off. 
As a consequence they integrate LCIA indicators into the energy system model and perform a multi 
objective optimisation using costs and a ReCiPe single score to represent the environmental dimension. 
They use a partial equilibrium model formulated as mixed integer linear programming problem allowing 
capacity expansion in Germany. Three pareto-point efficient solution are analysed further by their 
midpoint impact assessment indicators. (Rauner and Budzinski, 2017) 

We can observe that frameworks for an integrated assessment of ESMs and LCAs have been 
developed and models with an application on national power grids are existent. However, the multi-
criteria objective of an environmental assessment is either represented by cost optimisation solved under a 
limitation on GHG emissions or by weighting procedures of few selected indicators. A whole integration 
of the full array of impact indicators and their different outcomes, if optimised individually, is seen as 
necessity to deliver a holistic picture of the system and to develop communicable impact scores. 
Especially with a rising share of less CO2-intensive renewable energies, the application of further impact 
categories is even more relevant to avoid undesired side effects. Moreover the implementation of 
renewables opens new opportunities for decentralised energy systems. With growing affordability we see 
a huge potential for an implementation of a sustainable energy system in residential areas financed 
sharingly by private capital. Community energy systems have been identified to have fewer technical, 
administrative and economic resources to devote to sustainability projects and therfore demand for 
decision-making tools (McKenna et al., 2018). Thus, besides the national perspective in the energy 
system analysis the investigation of decentral systems is deemed necessary.  
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3 Life Cycle Asssement based Energy Decision Support Tool 
The development of the Life Cycle Assessment based Energy Decision Support Tool (LAEND) is 

subdivided into (i) the techno-economic ESM, (ii) the parametrisation of the LCA data for an 
implementation into the ESM, (iii) the development of a link between the ESM and the LCA and (iv) the 
extension of the objective function of the ESM to implement a multi-criteria sustainability array (see also 
Figure 1). Recently, a growing number of models have opened their code base and allow to reuse and 
modify the models as well as to improve efficiency, scrutiny, reproducibility, reusability and transparency 
in energy system modelling (Hilpert et al., 2018). Examples are calliope (Pfenninger and Keirstead, 
2015), MESSAGEix (Huppmann et al., 2019), oemof (Hilpert et al., 2018), OSeMOSYS (Howells et al., 
2011), PyPSA (Brown et al., 2018) and urbs (Dorfner et al., 2017).4 We focussed on models using python 
as programming language to ease the coupling of the model to LCA tools. Python is widely used in 
science and LCA tools are available for python, e.g. Brightway 2 (Mutel, 2016), olca-ipc (PyPi, 2019), 
and wurst (PyPi, 2019). Commonly used LCA software such as openLCA and Umberto growingly 
implements the support of python scripts (Di Noi et al., 2017; ifu, 2016). In addition, python provides a 
decent basis for data handling and data analysis with additional modules such as numpy, pandas and 
matplotlib.  

For the further development of a linear optimisation model, we use the open source energy system 
modelling framework oemof (Hilpert et al., 2017) together with the commercial Gurobi optimization 
solver5. Oemof provides the main prerequisites in terms of the technical resolution of a decentralised 
residential energy system and economic variables such as operational and investment costs. Furthermore, 
it offers an adjustable timely resolution, wide flexibility, sophisticated feed-in packages (demandlib, 
feedinlib, tespy) and is open for modifications. In benchmark studies, amongst others, the commercial 
solver Gurobi has proved advantages in run time (Gurobi, 2013; Meindl and Templ, 2012) and therefore 
was chosen to reduce the calculation time. To allow an expansion planning up to the year 2040, we 
extended the functionality of the economic tools integrated in oemof to include cost degression of future 
investments. 

For the link to the environmental assessment, we use olca-ipc (PyPi, 2019) connected to openLCA 
(Greendelta, 2018). This allows to benefit from the whole usability of the openLCA interface and in the 
same time to communicate with python-based software via Inter Process Communication (IPC). Figure 1 
shows an overview of the LAEND model framework, composed of an energy system with the 
corresponding input data, LCA tools and the optimisation objectives. 

                                                      

4 A full list can be accessed through the openmod initiative, see also Richstein (2019). 
5 Gurobi optimisation solver, available at http://gurobi.com/products/gurobi-optimizer 
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Figure 1 Representation of the energy system, tools, methods and objectives. PV = Photovoltaics, CHP = Combined heat and 
power, LiB = Lithium iron phosphate/lithium titanate Battery, VRFB = Vanadium redox flow battery, JRCII= Combined 
environmental scenario with weighted and normalised indicators as suggested by the European Commission’s Joint Research 
Centre (JRC), 5050 = 50 % Total system costs, 50% JRCII. Icons by Icons8 (2018). 

 

3.1 Integration of Life Cycle Assessment  

To include environmental impacts, we coupled oemof (Hilpert et al., 2018) and the olca-ipc package 
(PyPi, 2019) with the open source LCA modelling software openLCA (Ciroth, 2007). Ecoinvent 3.5 
database (Wernet et al., 2016) and ILCD 2.0 midpoint 2018 Impact Assessment also called EF 2.0 (Fazio 
et al., 2018) are used for the analyses. Following the economic scheme the Life Cycle Inventory data is 
paramterised into construction (investment) and operational environmental intervention for the integration 
into the ESM. The LCAs are following ISO 14040, 14044 (International Standard Organisation, 2009, 
2006) and recent ILCD recommendations (European Commission, 2010). Because the data for battery 
storage is very basic in ecoinvent, we used data from literature6 to extend the database by two promising 
battery technologies: lithium iron phosphate lithium titanate (LiB) and vanadium redox flow batteries 
(VRFB).  

To consider environmental impacts within the objective function, we include an environmental 
attribute to the objective function. This attribute can either represent a single environmental impact or the 
(weighted) sum of several indicators. Thereby we can assess total system costs and each environmental 
impact separately to calculate minima scenarios for each indicator on the one hand. On the other hand this 
extention allows to apply combined economic-environmental scenarios by using weights. The altered 
term for the variable costs within the objective function consists of the originally implemented costs term 

                                                      

6 Baumann et al. (2017); Baumann et al. (2018); Peters et al. (2017); Bauer (2010); Weber et al. (2018); 
Zackrisson et al. (2010); Peters and Weil (2018). 



 

page 7 of 20 

(costs multiplied by the flows of the edges 𝐸 and nodes 𝐾 (Hilpert et al., 2018; oemof, 2018)) and the 
extended environmental term as follows: 

min ෍ ෍ ሾ𝑐ሺ௜,௢ሻ

ሺ௜,௢ሻ∈ா ௧∈்

൉ 𝑤ሺ௜,௢ሻ
௖ ሺ𝑡ሻ ൅ 𝑒ሺ௜,௢ሻ ൉ 𝑤ሺ௜,௢ሻ

௘ ሺ𝑡ሻሿ𝑥ሺ௜,௢ሻሺ𝑡ሻ 

൅ ෍ ෍ ሾ𝑐ሺ௡ሻ

௞∈௄ ௧∈்

൉ 𝑤ሺ௜,௢ሻ
௖ ሺ𝑡ሻ ൅ 𝑒ሺ௜,௢ሻ ൉ 𝑤ሺ௜,௢ሻ

௘ ሺ𝑡ሻሿ𝑥ሺ௜,௢ሻሺ𝑡ሻ 
(1) 

where 𝑐 are the variable costs, 𝑒 the environmental interventions, 𝑥 denotes the flow and 𝑡 the time step, 
and k the node. The weight 𝑤 is given to costs and environmental intervention. The time is set by 𝑡 and 
the indices (𝑖, 𝑜) denote start and end node. If costs were optimised the weight of the environmental 
intervention is set to zero and vice versa. In combined scenarios separate weights for the costs and the 
respective environmental indiciator can be applied.  

For an expansion modelling oemof requires the inclusion of investment costs which are added to the 
objective function. Therefore, in the investment mode oemof calculates the annuity 𝑎 by (oemof, 2018): 

𝑎 ൌ  𝐶 ൉
𝑊𝐴𝐶𝐶 ሺ1 ൅  𝑊𝐴𝐶𝐶ሻ௡

ሺ1 ൅  𝑊𝐴𝐶𝐶ሻ௡   െ  1
 (2) 

where capital expenditures 𝐶, weighted average cost of capital WACC and years 𝑛 are set. Additionally 
we added fixed costs 𝑓 and a cost decrease 𝑑 to allow an additional factor for technical progress resulting 
in the equivalent periodical costs 𝑒𝑝𝑐: 

𝑒𝑝𝑐 ൌ
𝑎 ൅ 𝑓

ሺ1 ൅ 𝑑ሻ௡  ∙ 𝑛 (3) 

Finally, the original investment term of the objective function provided by (Hilpert et al., 2018; oemof, 
2018) is altered as follows: 

min ෍ ෍ ሾ𝑒𝑝𝑐ሺ௜,௢ሻ

ሺ௜,௢ሻ∈ா ௡∈ே

൉ 𝑤ሺ௜,௢ሻ
௖ ሺ𝑛ሻ ൅ 𝑒ሺ௜,௢ሻ ൉ 𝑤ሺ௜,௢ሻ

௘ ሺ𝑛ሻሿ𝑥ሺ௜,௢ሻሺ𝑛ሻ 

൅ ෍ ෍ ሾ𝑒𝑝𝑐ሺ௡ሻ

௞∈௄ ௧∈்

൉ 𝑤ሺ௜,௢ሻ
௖ ሺ𝑛ሻ ൅ 𝑒ሺ௜,௢ሻ ൉ 𝑤ሺ௜,௢ሻ

௘ ሺ𝑛ሻሿ𝑥ሺ௜,௢ሻሺ𝑛ሻ 
(4) 

Both terms (1) and (4) of the objective functions are summed up to reflect total system costs and 
environmental interventions and  constitute the objective function to be minimised. 

 

3.2 Assumptions for the analyses of a typical residential quarter 

The energy system in the model is designed to cover the electricity demand of a typical residential 
quarter near Pforzheim, Germany by multicrystalline silicon photovoltaics (PV), gas/biogas combined 
heat and power (CHP), wind power, and electricity from the grid. Two battery storage technologies are 
offered to the model: lithium iron phosphate/lithium titanate battery (LiB) and vanadium redox flow 
battery (VRFB). The period under consideration is 2018 to 2040 and the timely resolution is set to one 
hour. 

The electricity demand for the residential quarter is represented by electrical load profiles of 
residential buildings in Germany. The data provided by (Tjaden et al., 2015) covers the time frame of one 
year and is assumed not to change over the following years. As our first analyses focus on the electricity 
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sector, the heat demand of the residential quarter is not considered. An additional sink is therefore 
modelled for the heat as by-product from the CHP units. A credit for this heat is considered in the 
environmental assessment due to the inherent ecoinvent structure which allocates CHP by exergy. In 
economic terms a credit for the heat was not considered. 

The photovoltaic geographical information system (PVGIS) (European Commission (2017), 
delivers solar irradiance data and feed-in profiles for the location Pforzheim in Germany for the last 10 
years. Parameters in PVGIS are set to a fixed, optimized slope and azimuth, 14 % efficiency and 
crystalline silicon modules. These time series from 2007 to 2016 have been extrapolated to cover the time 
frame up to 2040. Wind power is based on weather data from the German Meteorological Service7. Gaps 
within DWD data are interpolated and the completed time series from 2006 to 2017 is extrapolated to 
cover the period under consideration.   

The energy technologies are based on the data implemented in ecoinvent 3.5 to achieve a maximum 
overlap of technical and environmental modelling. Life time is assumed with 20 years for CHP, PV and 
the wind turbine. Electrical efficiency of the natural gas fired CHP accounts to 37 %, thermal efficiency 
to 49%, using biogas it changes to 39 % (electrical) and 49 % (thermal) (ASUE, 2014). Wind power is 
calculated with the wind turbine power coefficient 𝑐௣ for the turbine Nordex N50 800 kW, which 

represents data of wind turbines smaller than 1 MW in ecoinvent. The yield is calculated by the oemof 
feed-in modules feedinlib and windpowerlib and its basic model SimpleWindTurbine, which is sufficient 
for singular wind turbine installations. Efficiencies and cycle life time of the batteris LiB and VRFB are 
stemming from literature (Bauer, 2010; Baumann et al., 2018; Baumann et al., 2017; Peters et al., 2017; 
Peters and Weil, 2018; Weber et al., 2018; Zackrisson et al., 2010). The charge rates (C-rates) have been 
assumed on a low level (C/6) to reach the expected cycle life time of the battery (Wikner and Thiringer, 
2018). 

The variable, fixed and investment costs used in the model can be found in Table 1. The weighted 
average cost of capital as well as the annual cost decrease, due to technical progress are assumed with 
1 %, respectively. Additionally a natural gas price of 6 ct/kWh (Bundesnetzagentur, 2017; Verivox, 2019) 
and a biogas price of 10 ct/kWh (Bundesnetzagentur, 2014; naturstrom, 2019; Polarstern, 2019) are 
applied. 

 

Table 1: Costs, efficiency and life time per energy technology, CHP = Combined heat and power, PV = Photovoltaics. 

Costs / 

Technology 

Variable 

[€/kWhel] 

Fixed 

[€/kWel/a] 

Investment  

[€/kWel] 

Effi-

ciency 

Life 

time 

Reference 

Grid electricity 0.14 N/A N/A N/A N/A Fraunhofer ISE (2019a), Vattenfall (2019) 

CHP gas 0.01 N/A module: 760, 

transport: 46, 

installation: 342 

el. 37 %, 

th. 49 % 

20 yr. ASUE (2014) 

CHP biogas 0.02 N/A module: 764, 

transport: 46, 

installation: 342 

el. 37 %, 

th. 49 % 

20 yr. ASUE (2014) 

                                                      

7 Deutscher Wetter Dienst (2018). 
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PV N/A 1 % of 

investment 

1300 14 % 20 yr. Wirth (2019), European Commission (2017) 

Wind 0.03 59 1558 N/A 20 yr. IRENA (2018) converted from USD  

(0.89 EUR/USD) 

Lithium-ion 

battery (LiB) 

≈ 0.11 25 Batt.mgmt.: 374,  

inverter: 500, 

installation: 125, 

approvals: 50 

90 %,  

C/6 

8000 

cycles 

Baumann et al. (2018; 2017),  

Peters et al. (2017) 

Vanadium-redox 

flow battery 

(VRFB) 

≈ 0.05 40 Batt.mgmt.: 374, 

inverter: 500, 

installation: 125, 

approvals: 50 

75 %,  

C/6 

8000 

cycles 

Baumann et al. (2018; 2017), 

Peters et al. (2017) 

 

3.3 Single criterion and multi criteria optimisation of the residential quarter 

The optimisation of the residential quarter in our analyses can be devided into two major classes: 

- Optimisation for one single criterion and 
- Optimisiation for multi criteria. 

With regard to the optimisation for one single criterion, calculations were made for each of the 19 
criteria individually. The results are of scientific interest even though they do not represent a likely future 
development as they may result in exorbitant total system costs and / or violate existing environmental 
constraints. Nevertheless, the resulting minimal value for each criterion is determined by these 
calculations and serves as basis for the further evaluation of the multi-criteria optimisation. Moreover, it 
is crucial to indicate goal conflicts which may potentially be cleared out in the multi-criteria optimisation. 

For the multi-criteria optimisation two different objective functions considering multiple criteria 
have been applied to the model: 

1. JRCII: For this integrated environmental optimisation, recent normalisation and weighting 
factors provided by the European Commission’s Joint Research Centre (JRC) are used, based 
on the publications of Sala et al. (2017) and Huppes and van Oers (2011).8 Therfore the 
environmental intervention 𝑒 is build for all impact categories 𝐸: 

𝑒 ൌ ෍
𝑒௜

𝑁௜
∙ 𝐺௜ 

௜∈ா 

 (5) 

where 𝑁 determines the normalisation and 𝐺 the weighting factor. The environmental        
intervention 𝑒 is used for the two terms of the objective functions (1) and (4). Analogously to 
the single-criteria optimisation the weight 𝑤௖ in the objective functions is set to zero because 
total system costs are not assessed by these optimisation criterias. 

                                                      

8 The impact categories Climate change biogenic, fossil and land use have not been considered in this scenario as 
weighting and normalisation factors are not available. 
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2. 5050: The objective function from the JRCII optimisation is used together with the total 
system costs. The total system costs are normalised by the gross world domestic product at 
purchasing power parity taken from (IMF, 2019). The aggregated JRCII environmental 
criteria and the total system costs are weighted equally with 50 % in the objective function.  

 

4 First results for a typical residential quarter 
In the following at first the results for the optimisation considering one criterion are presented 

before the results for the integrated multi-criteria optimisation are introduced. The chapter closes with a 
short overview of results from a sensitivity analysis.  

 

4.1 Results optimising single criteria  

Figure 2 shows the optimal share of the generated electricity from each technology in total 
electricity production for the 19 single-criterion optimisations. When the minimisation of Total system 
costs or the impact category Human toxicity carcinogenic is the objective of the optimisation, electricity 
from the grid and a share of about 10 % PV power is chosen. Battery storage is avoided due to the 
flexibility of grid power and the higher total system costs involved. In contrast to that for the 
minimisation of the impact categories Climate change (fossil & total), Acidification potential, 
Eutrophication (marine & terrestrial), Photochemical ozone creation or Fossil resources, the optimal 
solution is 100 % wind power with up to 37 % overall electricity from battery storage. Electricity from 
CHP is beneficial if the objective is the minimisation of Climate Change (biogenic, land use), 
Ecotoxicity, Eutrophication freshwater, Ionising radiation, Human toxicity non-carcinogenic, Respiratory 
effects, Water dissipated, or Land use. Even though the share of electricity from CHP is subject to 
optimisation, battery storage of up to 8 % is part of the optimal solution to account for demand peaks and 
smaller CHP capacity. Gas driven CHP has been favoured to biogas CHP in the optimisation in all of the 
single-criteria optimisations except of Human toxicity non-carcinogenic which uses both. Moreover a mix 
of wind, PV and electricity from the grid with battery storage of up to 22 % is used for an optimal energy 
system in the impact category Ozone depletion potential. The results of Total system costs and Human 
toxicity carcinogenic objectives correlate, however they are outliers compared to the majority of the 
scenarios.  

Wind power has been considered in seven out of 19 midpoint impact optimisation scenarios as sole 
generation technology and in three additional scenarios as certain share. CHP shows advantages in nine 
impact categories. These impact categories are mostly connected to mining activities and the production 
of metals. It can be observed that the total system costs of the energy system for the period until 2040 rise 
exorbitantly if battery storage and wind power are included. In the systems considering solely wind and 
battery storage the total system costs rise from around 2 Million in the optimal case to almost 990 Million 
Euros. If CHP or electricity from the grid are used, total system costs are in the low-field, however if 
battery storages are used, total system costs are rising quickly.  
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Figure 2 Electricity output in proportion to total production (vertical bars), battery ratio and total system costs for single- 
criteria optimisation. Battery ratio build as ratio of battery output to total generated electricity. 

 

4.2 Results optimising multi criteria  

For the multi-criteria optimisation, CHP operated by natural gas is favoured in the JRCII scenario which 
considers environmental impact categories only (Figure 3). The same applies for the 5050 scenario which 
combines JRCII and Total system costs weighted equally. The results for both scenarios are equal, hence 
the effect of the normalised cost implementation seems to be marginal compared to the environmental 
impacts. Both scenarios roughly coincide with the minimisations for Climate change (land use), 
Ecotoxicity, Eutrophication freshwater, Ionising radiation, Human toxicity non-carcinogenic, Respiratory 
Effects, Water dissipated and Land use. Battery storage is avoided in these sccenarios and total system 
costs are in the low-field, although around 54 % higher than the sole cost optimisation scenario. 
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Figure 3  Electricity output in proportion to total production (vertical bars), battery ratio and total system costs for multi-criteria 
optimisation. Battery ratio buildas ratio of battery output to total generated electricity. 

 

4.3 Sensitivity analysis  

Sensitivity analysis shows the robustness of the results and uncovers critical assumptions and 
influenctial parameters. From the results we observe that in most scenarios the expansion of PV is 
avoided. PV technology was object of fast-growing changes and its efficiency increased by 5 % in the last 
10 years (Fraunhofer ISE, 2019b). Therefore we assume a 5 % stepwise decrease of the impact assess-
ment results of PV to investigate effects of possible changes in electricity production from PV production. 
Not before the impact of the PV is reduced to 45 %, compared to the actual data, the model starts to 
expand PV and the share of PV electricity generation is about 5 %. By a reduction to 30 % of the original 
impact, wind is excluded and solely PV used.  

Both PV and wind power effectivness depend highly on the weather conditions which refer to the 
location chosen. Therefore we analyse two additional locations, Norden in Germany which represents an 
area with high wind levels and Tarifa in southern Spain to additionaly investigate higher wind levels and 
higher solar insolation rates. In Norden the optimisation for total system costs leads to a 2 % lower result. 
PV power partly is replaced by wind power, however the electricity demand is still supplied to 85 %  by 
grid power. From an environmental perspective the choice of a more wind-intense location leads to 
increased wind power shares and two additional impact categories change to a wind power supply (Land 
use, Ionising radiation). In the Norden case 12 out of 18 impact categories propose solely wind power or 
a partly share. Results for Tarifa show a reduction of total system costs of 9 %. Furthermore, the 
optimisation of impact categories already applying PV increase the PV share by partly replacing wind 
power. No use of PV occurs for the optimisation of impact categories which have not used PV before. It 
has to be kept in mind that Tarifa, being near the coast also has higher wind occurrence than the original 
location of this study and therefore both factors influence the cost reduction.  

The results show that the optimum in many impact categories leads to a steep cost increase partly 
because of the high costs of battery storage. As battery storage is a relative new technology, a cost 
decrease in the common years is expected. We therefore assume a cost decrease for battery storages to 
test when the storage plus renewable would be cost-efficient compared to grid electricity. The lowering of 
variable and investment costs to 4 % of the actual value leads to a switch to more electricity from PV than 
from the grid.  

 

5 Discussion 
The developed tool LAEND allows a linear optimisation of a residential energy system by  both 

total system costs and by LCIA categories - either singularly or combined if normalisation and weighting 
procedures are applied. Therfore the results provided by LAEND enable a more sophisticated 
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identification of goal conflicts in the optimisation of energy systems, especially when implementing 
renewables and battery storage. Critical uncertainties and assumptions are tested in a sensitivity analysis. 
However, meeting the aim of the study is accompanied by limitations given by the methodology and the 
assumptions made.  

In general, models represent a very simplified reflection of real-world system behaviour and hence 
the results of the models are only valid within the opted system boundaries and the specific input data 
depending on the applied location, the efficiency factors and the costs. For our ESM, constraints such as 
emission limits from national goals have not been applied yet because they are not provided for all of the 
LCA assessed environmental interventions.  

The LCA methodology includes uncertainties in the data sources, dataset choices, specifities of the 
datasets, assumptions made and the methodologocial choices. Because of the application of the ecoinvent 
database as well as literature data, the study relies on the data quality and furthermore on the inherent 
allocation procedures of the datasets (Weidema et al., 2013). The validity and topicality of the data is not 
always ensured, for example the PV data is from the year 2012. From the methodological site, linear 
scaling of datasets and impacts is common practice in LCA. However linear scaling has not necessarily to 
correspond with real-world behaviour of systems, which goes beyond the methodological limits of LCA. 
Moreover the LCA was conducted without taking into account future changes which can alter the LCIA 
especially due to a different future electricity mix or improved efficiencies. Uncertainties of Life Cycle 
Impact Asessment methods such as USEtox, which build the underlying methodology of the toxicity 
impact categories, are discussed in recent literature (Nordborg et al., 2017). Furthermore most LCIA 
methods do not distinguish between local or global environmental interventions. Therfore they are not 
able to assess impacts in the context of the local specifities which can have a major influence in energy 
system assessments. Another source of uncertainties is the use of the single score approach by 
normalisation and weighting of the individual impact categories based on global impact factors.  

The results of the single-criteria optimisation clearly show the discrepancy of total system costs and 
environmental goals. While cost-optimal systems rely on electricity from the grid and CHP, the impacts 
in the categories Climate change (fossil & total), Acidification Potential, Eutrophication (marine & 
terrestrial), Photochemical ozone creation, Fossil resources can be reduced by the implementation of 
wind power and battery storage. But wind power and battery storage lead to a tremendous cost increase, 
and even at wind-intense locations it is challenging to compete with electricity from the grid. The results 
also show that CHP operated with natural gas on the one hand has a higher output in the category Climate 
Change (fossil & total) but on the other hand is able to minimise the values for Ecotoxicity, 
Eutrophication freshwater, Ionising radiation, Human toxicity non-carcinogenic, Respiratory effects, 
Water dissipated and Land use. All in all it can also be derived that except for Total system costs and 
Minerals and Metals electricity from the grid has disadvantages in all other impact categories compared 
to a self-sufficient energy system considering the simplified model of a residential area. Also the 
assessment of PV is connected to mining activities which show a negative influence on the environmental 
impacts. It has to be taken into account that PV data is from 2012 and the actual impacts of such a fast-
changing technologies could be different - an assessment with recent data therefore could turn the results. 
Nevertheless, in the current state a share of PV is beneficial not only for the minimisation of  Total system 
costs, but also for the categories Human toxicity carcinogenic and Ozone depletion potential. Due to the 
avoidance of constraints in the model also marginal variations in the costs or the environmental 
interventions can lead to a complete switch to other technologies, which is known as Penny Switching 
Effect (Lopion et al., 2019).  
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To enhance communication and decision-support, results for two combined scenarios are  
calculated: JRCII covering the environmental categories and 5050 adding  total system costs to the 
environmental categories. They both show conflicting results compared to other midpoints and do not 
completely reflect the results of the individual environmental indicators. Eventhough communicability 
improves by the aggregation they do not replace the individual assessment of the midpoint impact 
categories. Moreover it can dissolve individual peaks and impede the adaption to specific environmental 
pressures.  

 

6 Conclusions and Outlook 
Under the assumptions made and the limitations given, we conclude that total system costs are not a 
sufficient objective for the optimisation of residential electricity systems. Environmental pressures caused 
by the energy sector and the already existent exceedance of environmental planetary boundaries call for a 
multi-criteria analysis considering environmental impacts. But also environmental single score indicators, 
calculated from normalised and weighted midpoint indicators, have to be used with caution as they do not 
necessarily represent the trend or majority of the individual midpoint indicators. Conflicts between 
environmental indicators such as climate change and land or resource use are diluted by single score 
indicators. It is shown that electricity from the grid with a 10 % share of PV is cost-effective but not 
optimal from an environmental perspective. Wind power, battery storage and CHP show advantages in 
most of the environmental impact assessment categories, but do lead to an increase in the total system 
costs. Thus we conclude that environmental indicators at midpoint level need to be integrated into energy 
system models to allow a decision-making based on environmental sustainability determinants. In 
contrast to that, cost optimisation will lead to optimised systems which do not correspond to sustainability 
goals.  

Due to the conflicts identified with the single score indicators, we recommend the further integration of a 
priori multi-criteria optimisation methodologies. Moreover we see the necessity to calculate the entire 
impact assessment independently from the individual optimisation objective for single criterion 
optimisation. This would enhance the possibility to show distances from optimal values and thus give 
further assistance to the decision maker. Thereout also distance-to-minima scenarios could deliver a more 
sophisticated normalisation factor for the midpoint impact indicator results. The inclusion of constraints 
such as national emission limits or targets, e.g. according to the ecological scarcity method, is necessary 
in future assessments to avoid Penny Switching Effects. A consequential approach for future LCA data 
has to be implemented in order to reflect future changes in power mix, production efficiencies etc. 
Additionally uncertainties and limitations in LCA datasets and LCIA methodologies have to be 
investigated to include a risk assessment into the decision supporting procedure of the combined ESM 
and LCA approach. 

The energy model used for this study representing a residential energy system is very basic. The 
implementation of a wider range of technologies as well as sector coupling by the inclusion of heat and 
mobility are a future subject to research. From the perspective of a sustainability assessment also the 
extention of the indicator set to the social dimension, particularly in view of the compliance with the 
Sustainable Develeopment Goals, is proposed. 

 



 

page 15 of 20 

7 Acknowledgements 
The authors would like to thank Jens Buchgeister, Selina Weber, Jens F. Peters, Manuel Baumann 

and Marcel Weil from the Karlsruhe Institute of Technology (KIT) for the provision of Life Cycle 
Assesssment data for batteries. 

 

8 References 
Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B.L. and Hertwich, E.G. (2018), “Deriving life cycle 

assessment coefficients for application in integrated assessment modelling”, Environmental Modelling 
& Software, Vol. 99, pp. 111–125. 

ASUE (2014), BHKW-Kenndaten 2014/2015: Module, Anbieter, Kosten, energieDRUCK, Berlin. 
Atilgan, B. and Azapagic, A. (2016), “An integrated life cycle sustainability assessment of electricity 

generation in Turkey”, Energy Policy, Vol. 93, pp. 168–186. 
Azapagic, A. and Clift, R. (1999), “The application of life cycle assessment to process optimisation”, 

Computers & Chemical Engineering, Vol. 23 No. 10, pp. 1509–1526. 
Azapagic, A., Stamford, L., Youds, L. and Barteczko-Hibbert, C. (2016), “Towards sustainable 

production and consumption: A novel DEcision-Support Framework IntegRating Economic, 
Environmental and Social Sustainability (DESIRES)”, Computers & Chemical Engineering, Vol. 91, 
pp. 93–103. 

Bauer, C. (2010), “Ökobilanz von Lithium-Ionen Batterien”, Paul Scherrer Institut, Labor für 
Energiesystem-Analysen (LEA), Villingen, Switzerland. 

Baumann, M., Peters, J. and Weil, M. (2018), “Ökologische und ökonomische Performance stationärer 
Li-ion-Batteriespeicher”, Technische Universität Graz, No. 15. Symposium Energieinnovation, 14. 
bis 16. Februar 2018, 

Baumann, M., Peters, J.F., Weil, M. and Grunwald, A. (2017), “CO2 Footprint and Life‐Cycle Costs of 
Electrochemical Energy Storage for Stationary Grid Applications”, Energy Technology, Vol. 5 No. 7, 
pp. 1071–1083. 

Biggar, D.R. and Hesamzadeh, M.R. (2014), The economics of electricity markets, John Wiley & Sons. 
BMWi, B.M.U. (2010), “Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare 

Energieversorgung”, Bundesministerium für Wirtschaft und Technologie (BMWi), Bundesministerium 
für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. 

Brown, T., Hörsch, J. and Schlachtberger, D. (2018), “PyPSA: Python for Power System Analysis”, 
Journal of Open Research Software, Vol. 6 No. 3, p. 12. 

Bruijn, H., Duin, R., Huijbregts, M.A.J., Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., 
Koning, A., Oers, L. and Wegener Sleeswijk, A. (Eds.) (2004), Handbook on Life Cycle Assessment: 
Operational Guide to the ISO Standards, Eco-Efficiency in Industry and Science, Vol. 7, Kluwer 
Academic Publishers, Dordrecht. 

Bundesnetzagentur (2014), Biogas- Monitoringbericht 2014: Bericht der Bundesnetzagentur über die 
Auswirkungen der Sonderregelungen für die Einspeisung von Biogas in das Erdgasnetz, Bonn. 

Bundesnetzagentur (2017), Monitoringbericht 2017, Bonn. 
Carapellucci, R. and Giordano, L. (2012), “Modeling and optimization of an energy generation island 

based on renewable technologies and hydrogen storage systems”, International journal of hydrogen 
energy, Vol. 37 No. 3, pp. 2081–2093. 



 

page 16 of 20 

Ciroth, A. (2007), “ICT for environment in life cycle applications openLCA — A new open source 
software for life cycle assessment”, The International Journal of Life Cycle Assessment, Vol. 12 
No. 4, p. 209. 

Deutscher Wetter Dienst (DWD) (2018), “Climate Data Center”, available at: 
https://cdc.dwd.de/portal/201809260905/index.html (accessed 25 November 2018). 

Di Noi, C., Ciroth, A. and Srocka, M. (2017), “openLCA 1.7 Comprehensive User Manual”, available at: 
https://www.openlca.org/wp-content/uploads/2017/11/openLCA1.7_UserManual.pdf (accessed 14 
May 2019). 

Dorfner, J., Schönleber, K., Dorfner, M. and Herzog S. (2017), “tum-ens/urbs: v0.7”, Zenodo. 
Doukas, H., Flamos, A. and Lieu, J. (2019), Understanding Risks and Uncertainties in Energy and 

Climate Policy, Springer International Publishing, Cham. 
European Commission (2010), Communication from the Commission to the European Parliament, the 

Council, the European Economic and Social Committee and the Committee of the Regions: Energy 
2020 A strategy for competitive, sustainable and secure energy, Brussels, available at: https://eur-
lex.europa.eu/legal-content/EN/TXT/?qid=1409650806265&uri=CELEX:52010DC0639 (accessed 6 
May 2019). 

European Commission (2017), “Photovoltaic Geographical Information System (PVGIS)”, available at: 
http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP. 

European Parliament and Council of the European Union (2009), Directive 2009/28/EC of the European 
Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable 
sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, available 
at: http://www.nezeh.eu/assets/media/fckuploads/file/Legislation/RED_23April2009.pdf (accessed 22 
November 2018). 

Fazio, S., Castellani, V., Sala, S., Schau, E.M., Secchi, M., Zampori, L. and Diaconu, E. (2018), 
Supporting information to the characterisation factors of recommended EF Life Cycle Impact 
Assessment method.: New models and differences with ILCD, JRC109369. 

Fraunhofer ISE (2019a), “Energy Charts”, available at: https://www.energy-charts.de (accessed 13 May 
2019). 

Fraunhofer ISE (2019b), Photovoltaics report, Freiburg, available at: http://www. ise. fraunhofer. 
de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides. pdf/view, rapport publié en 
(accessed 25 May 2019). 

García-Gusano, D., Iribarren, D., Martín-Gamboa, M., Dufour, J., Espegren, K. and Lind, A. (2016), 
“Integration of life-cycle indicators into energy optimisation models: the case study of power 
generation in Norway”, Journal of Cleaner Production, Vol. 112, pp. 2693–2696. 

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. de, Struijs, J. and van Zelm, R. (2013), ReCiPe 
2008: A life cycle impact assessment method which comprises harmonised category indicators at the 
midpoint and the endpoint level, First edition (revised). 

Goedkoop, M.J. and Spriensma, R. (2000), The Eco-indicator 99: a damage oriented method for Life 
Cycle Impact Assessment Methodology Report, Second edition, Amersfoort, available at: 
http://teclim.ufba.br/jsf/indicadores/holan%20ecoindicator%2099.pdf (accessed 22 November 2018). 

Greendelta (2018), “openLCA”, available at: http://www.openlca.org/ (accessed 20 February 2019). 
Gurobi (2013), Gurobi 5.5 Performance Benchmarks, available at: http://sat-

ag.com/Benchmarks%205.1b.pdf (accessed 14 May 2019). 
Hauschild, M., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jollie, O., Margini, M. and 

Schryver, A. de (2011), Joint Research Centre. Institute for Environment and Sustainability. 
Recommendations for Life Cycle Impact Assessment in the European context: Institute for 



 

page 17 of 20 

Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook- 
Recommendations for Life Cycle Impact Assessment in the European context, Publications Office of 
the European Union, Luxembourg. 

Hauschild, M.Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., 
Schryver, A. de, Humbert, S. and Laurent, A. (2013), “Identifying best existing practice for 
characterization modeling in life cycle impact assessment”, The International Journal of Life Cycle 
Assessment, Vol. 18 No. 3, pp. 683–697. 

Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S., Wingenbach, C. and Plessmann, G. (2018), “The 
Open Energy Modelling Framework (oemof)-A new approach to facilitate open science in energy 
system modelling”, Energy strategy reviews, Vol. 22, pp. 16–25. 

Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., 
DeCarolis, J., Bazillian, M. and Roehrl, A. (2011), “OSeMOSYS: The Open Source Energy Modeling 
System”, Energy Policy, Vol. 39 No. 10, pp. 5850–5870. 

Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F., Stam, G., Verones, F., Vieira, M.D.M., 
Hollander, A., Zijp, M. and van Zelm, R. (2016), ReCiPe 2016: A harmonized life cycle impact 
assessment method at midpoint and endpoint level. Report I: Characterization. 

Huppes, G. and van Oers, L. (2011), “Evaluation of weighting methods for measuring the EU-27 overall 
environmental impact”, JRC Scientific and Technical Reports, Publications Office of the European 
Union, 75pp. 

Huppmann, D., Gidden, M., Fricko, O., Kolp, P., Orthofer, C., Pimmer, M., Kushin, N., Vinca, A., 
Mastrucci, A. and Riahi, K. (2019), “The MESSAGEix Integrated Assessment Model and the ix 
modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of energy, 
climate, the environment, and sustainable development”, Environmental Modelling & Software, 
Vol. 112, pp. 143–156. 

Hwang, C.-L. and Masud, A.S.M. (1979), “Methods for multiple objective decision making”, in Multiple 
Objective Decision Making—Methods and Applications, Springer, pp. 21–283. 

Icons8 (2018), “Free Icons”, available at: https://icons8.com/icons (accessed 14 May 2019). 
ifu (2016), Umberto NXT Universal (v7.1): User Manual, 2.85th ed., Hamburg. 
IMF (2019), “World Economic Outlook (April 2019)”, available at: 

https://www.imf.org/external/datamapper/datasets/WEO (accessed 13 May 2019). 
International Standard Organisation (2006), Environmental management – Life cycle assessment – 

Principles and framework (ISO 14040:2006), Beuth Verlag, Berlin. 
International Standard Organisation (2009), Environmental management – Life cycle assessment – 

Requirements and guidelines (ISO 14044:2006), Beuth Verlag, Berlin. 
IPCC (2014), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge 
University Press, Cambridge, United Kingdom and New York, USA. 

IRENA (2018), Renewable Power Generation Costs in 2017, Abu Dhabi. 
Itsubo, N. and Inaba, A. (2005), “LIME2, Life-cycle impact assessment method based on endpoint 

modelling: summary”, Japan Environmental Management Association for Industry. 
Jones, D.F., Mirrazavi, S.K. and Tamiz, M. (2002), “Multi-objective meta-heuristics: An overview of the 

current state-of-the-art”, European journal of operational research, Vol. 137 No. 1, pp. 1–9. 
Klöpffer, W. and Grahl, B. (2014), Life cycle assessment (LCA): a guide to best practice, John Wiley & 

Sons. 
Lazar, L. and Tietze, I. (2019), “External Costs as Indicator for the Environmental Performance of Power 

Systems”, in Progress in Life Cycle Assessment 2018, Springer, pp. 89–102. 



 

page 18 of 20 

Lopion, P., Markewitz, P., Stolten, D. and Robinius, M. (2019), “Cost Uncertainties in Energy System 
Optimisation Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects”, 
Preprints, No. 2019050211. 

Luglietti, R., Rosa, P., Terzi, S. and Taisch, M. (2016), “Life cycle assessment tool in product 
development: Environmental requirements in decision making process”, Procedia CIRP, Vol. 40, pp. 
202–208. 

McKenna, R., Bertsch, V., Mainzer, K. and Fichtner, W. (2018), “Combining local preferences with 
multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small 
communities”, European journal of operational research, Vol. 268 No. 3, pp. 1092–1110. 

Means, P. and Guggemos, A. (2015), “Framework for life cycle assessment (LCA) based environmental 
decision making during the conceptual design phase for commercial buildings”, Procedia 
engineering, Vol. 118, pp. 802–812. 

Meindl, B. and Templ, M. (2012), “Analysis of commercial and free and open source solvers for linear 
optimization problems”, Eurostat and Statistics Netherlands within the project ESSnet on common 
tools and harmonised methodology for SDC in the ESS, Vol. 20. 

Meyer, D.E. and Upadhyayula, V.K.K. (2014), “The use of life cycle tools to support decision making for 
sustainable nanotechnologies”, Clean technologies and environmental policy, Vol. 16 No. 4, pp. 757–
772. 

Mutel, C. (2016), “Brightway 2. Advanced life cycle assessment framework”, available at: 
https://brightwaylca.org/. 

naturstrom (2019), “naturstrom biogas: Umweltschonden heizen und kochen”, available at: 
https://www.naturstrom.de/privatkunden/gas/ (accessed 13 May 2019). 

Nordborg, M., Arvidsson, R., Finnveden, G., Cederberg, C., Sörme, L., Palm, V., Stamyr, K. and 
Molander, S. (2017), “Updated indicators of Swedish national human toxicity and ecotoxicity 
footprints using USEtox 2.01”, Environmental Impact Assessment Review, Vol. 62, pp. 110–114. 

oemof (2018), “oemof.solph package”, available at: 
https://oemof.readthedocs.io/en/v0.2.3/api/oemof.solph.html (accessed 13 May 2019). 

Onat, N.C., Kucukvar, M., Tatari, O. and Zheng, Q.P. (2016), “Combined application of multi-criteria 
optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger 
cars in US”, Journal of Cleaner Production, Vol. 112, pp. 291–307. 

Pauliuk, S., Arvesen, A., Stadler, K. and Hertwich, E.G. (2017), “Industrial ecology in integrated 
assessment models”, Nature Climate Change, Vol. 7 No. 1, pp. 13–20. 

Peters, J.F., Baumann, M., Zimmermann, B., Braun, J. and Weil, M. (2017), “The environmental impact 
of Li-Ion batteries and the role of key parameters – A review”, Renewable and Sustainable Energy 
Reviews, Vol. 67, pp. 491–506. 

Peters, J.F. and Weil, M. (2018), “Providing a common base for life cycle assessments of Li-Ion 
batteries”, Journal of Cleaner Production, Vol. 171, pp. 704–713. 

Pfenninger, S. and Keirstead, J. (2015), “Renewables, nuclear, or fossil fuels? Scenarios for Great 
Britain’s power system considering costs, emissions and energy security”, Applied Energy, Vol. 152, 
pp. 83–93. 

Polarstern (2019), “Polarstern-Energie”, available at: https://www.polarstern-energie.de (accessed 13 May 
2019). 

PyPi (2019), “olca-ipc 0.0.7”, available at: https://pypi.org/project/olca-ipc/ (accessed 13 May 2019). 
Rauner, S. and Budzinski, M. (2017), “Holistic energy system modeling combining multi-objective 

optimization and life cycle assessment”, Environmental Research Letters, Vol. 12 No. 12, p. 124005. 



 

page 19 of 20 

Ren, H., Lu, Y., Wu, Q., Yang, X. and Zhou, A. (2018), “Multi-objective optimization of a hybrid 
distributed energy system using NSGA-II algorithm”, Frontiers in Energy, Vol. 12 No. 4, pp. 518–
528. 

Richstein, J.C. (2019), “openmod - open energy modelling initiative”, available at: http://www.openmod-
initiative.org (accessed 14 May 2019). 

Ringkjøb, H.-K., Haugan, P.M. and Solbrekke, I.M. (2018), “A review of modelling tools for energy and 
electricity systems with large shares of variable renewables”, Renewable and Sustainable Energy 
Reviews, Vol. 96, pp. 440–459. 

Sala, S., Crenna, E., Secchi, M. and Pant, R. (2017), “Global normalisation factors for the Environmental 
Footprint and Life Cycle Assessment”. 

Schiffer, H.-W. (2019), Energiemarkt Deutschland, Springer Fachmedien Wiesbaden, Wiesbaden. 
Steen, B. (1999), A systematic approach to environmental priority strategies in product development 

(EPS): Version 2000 - General system characteristics, Gothenburg, available at: 
https://www.ivl.se/download/18.7e136029152c7d48c202bba/1465979612076/CPM%20report%2019
99_4.pdf (accessed 25 November 2018). 

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, 
S.R., Vries, W. de, Wit, C.A. de, Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., 
Ramanathan, V., Reyers, B. and Sörlin, S. (2015), “Sustainability. Planetary boundaries: guiding 
human development on a changing planet”, Science (New York, N.Y.), Vol. 347 No. 6223, p. 1259855. 

Strantzali, E. and Aravossis, K. (2016), “Decision making in renewable energy investments: a review”, 
Renewable and Sustainable Energy Reviews, Vol. 55, pp. 885–898. 

Tjaden, T., Bergner, J., Weniger, J. and Quaschning, V. (2015), “Representative electrical load profiles of 
residential buildings in Germany with a temporal resolution of one second”, ResearchGate: Berlin, 
Germany. 

Umweltbundesamt (2018a), “National Trend Tables for the German Atmospheric Emission Reporting 
1990 - 2016 Final version 14.02.2018 (v1.0)”, available at: 
https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen (accessed 7 August 
2018). 

Umweltbundesamt (2018b), “National Trend Tables for the German Atmospheric Emission Reporting 
1990 - 2016 Version for the EU-Submission 15.01.2018”, available at: 
https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen (accessed 7 August 
2018). 

United Nations (2018), The Sustainable Development Goals Report, New York, available at: 
https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pdf. 

United States Environmental Protection Agency, Renewable Fuel Standard Program (RFS2) Regulatory 
Impact Analysis: Assessment and Standards Division, Washington, DC, available at: 
https://nepis.epa.gov/Exe/ZyPDF.cgi/P1006DXP.PDF?Dockey=P1006DXP.PDF. 

Vattenfall (2019), “Die Strompreis-Zusammensetzung”, available at: https://www.vattenfall.de/infowelt-
energie-strompreis (accessed 13 May 2019). 

Verivox (2019), “Verivox - Verbraucherpreisindex Gas”, available at: 
https://www.verivox.de/verbraucherpreisindex-gas/ (accessed 13 May 2019). 

Weber, S., Peters, J.F., Baumann, M. and Weil, M. (2018), “Life Cycle Assessment of a Vanadium Redox 
Flow Battery”, Environmental Science & Technology, Vol. 52 No. 18, pp. 10864–10873. 

Weidema, B.P., Bauer, C., Hischier, R., Mutel C, Nemecek, T., Reinhard, J., Vadenbo, C.O. and Wernet, 
G. (2013), Overview and Methodology: Data quality guideline for the ecoinvent database version 3: 
Ecoinvent Report 1 (v3), The ecoinvent Centre, St. Gallen. 



 

page 20 of 20 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. and Weidema, B. (2016), “The 
ecoinvent database version 3 (part I): overview and methodology”, The International Journal of Life 
Cycle Assessment, Vol. 21 No. 9, pp. 1218–1230. 

Wikner, E. and Thiringer, T. (2018), “Extending Battery Lifetime by Avoiding High SOC”, Applied 
Sciences, Vol. 8 No. 10, p. 1825. 

Wirth, H. (2019), Aktuelle Fakten zur Photovoltaik in Deutschland, Fassung vom 18.03.2019, Freiburg. 
Wood, A.J., Wollenberg, B.F. and Sheblé, G.B. (2013), Power generation, operation, and control, John 

Wiley & Sons. 
Yilmaz, O., Anctil, A. and Karanfil, T. (2015), “LCA as a decision support tool for evaluation of best 

available techniques (BATs) for cleaner production of iron casting”, Journal of Cleaner Production, 
Vol. 105, pp. 337–347. 

Yue, D., Pandya, S. and You, F. (2016), “Integrating Hybrid Life Cycle Assessment with Multiobjective 
Optimization: A Modeling Framework”, Environmental Science & Technology, Vol. 50 No. 3, pp. 
1501–1509. 

Zackrisson, M., Avellán, L. and Orlenius, J. (2010), “Life cycle assessment of lithium-ion batteries for 
plug-in hybrid electric vehicles–Critical issues”, Journal of Cleaner Production, Vol. 18 No. 15, pp. 
1519–1529. 

Zhang, Y., Liang, K., Li, J., Zhao, C. and Qu, D. (2016), “LCA as a decision support tool for evaluating 
cleaner production schemes in iron making industry”, Environmental Progress & Sustainable Energy, 
Vol. 35 No. 1, pp. 195–203. 


