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Abstract 

In the European Union, residential districts consume a high share of the total electricity, which is still mainly generated 

by conventional power plants. Consequently, utilising renewable energy carriers is necessary to mitigate climate 

change. Electricity storage systems are needed to address the fluctuation and the temporal shift between power 

generation and consumption, caused by a switch to energy carriers like solar and wind. To assess the electricity 

generation and the storage operation a techno-economic bottom-up model is applied. The goal is the dispatch 

optimisation of the analysed residential district in on-grid and off-grid cases considering an increasing application of 

battery electric vehicles. The combination with a Life Cycle Assessment allows the valuation of the environmental 

impacts of the applied electricity storage system. Gained results show that the operation of a lithium-ion-iron-

phosphate (LFP) or a vanadium-redox-flow (VRF) battery system with an installed capacity of 182 kWh is resulting 

in an increased utilisation of generated photovoltaic electricity. A reduction up to 17,968 kWh of grid supply is 

possible by utilising the LFP in scenario I. Higher installed capacities are dependent on electricity generation and 

demand. In the analysed energy system model increasing demand due to battery electric vehicles makes higher 

installed capacities of LFP meaningful. The off-grid system exhibits high degrees of self-supply and autarky, when 

the installed capacity of LFP accounts for 2850 kWh. But a self-sufficient operation is not possible. The low amount 

of charge and discharge cycles is indicating that calendric aging is more important than cycle life for stationary 

electricity storage systems. The valve-regulated-lead-acid battery is not operated due to its low cycle life, furthermore 

it exhibits the highest amounts in all analysed impact categories when discharging 1 MWh of electricity. The operation 

of VRF shows higher impacts in climate change and freshwater ecotoxicity than the LFP but results in lower values 

in the impact category resource depletion. 
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Introduction 

Households account for 29% of the entire electricity consumption in the European Union [1]. As the electricity 

generation in the European Union is still covered to 74% by conventional power plants, households contribute 

significantly to the emission of greenhouse gases [2]. Consequently, designing a sustainable energy system for 

residential districts is important to mitigate climate change. Substituting fossil fuels by renewable energies includes 

the utilisation of energy carriers such as solar and wind energy. To address their fluctuation and the temporal shift 

between power generation and consumption, electricity storage systems (ESS) are needed to secure a safe energy 

supply [3]. There is a variety of storage technologies available, which cause environmental impacts by their production 

and utilisation, for instance resource depletion and climate change [4–6]. Subsequently, finding an optimal economic 

and ecologic solution for residential districts is essential to balance resource use, climate change and costs. 

 

Real-world systems are usually represented by models [7]. There is a variety of models, model generators or 

frameworks available to create and calculate energy system models [8]. Previous studies have analysed national [9], 

international energy systems [10] or small networks (household networks) in particular. Dispatch optimisation of 

energy system models that represent an accumulation of household networks are currently underrepresented. In the 

area of small networks, ESS integration is considered, for instance in Zhang et al. [11] and Naumann et al. [12], 

whereas it is neglected in more extensive energy systems, e.g. in Barteczko-Hibbert et al. [13]. Moreover, if a storage 

facility is present in a system, often only one storage technology is investigated, e.g. in Huneke et al. [14] or Rauner 

and Budzinski [9]. Stadler et al. investigate the environmental impacts of a house's power supply and take into account 

the charging of battery electric vehicles (BEV) [15]. However, electromobility is hardly integrated into other studies. 

In the field of energy system modelling, Life Cycle Assessment (LCA) is rarely conducted concerning the utilised 

ESS. This raises the question about the influence of different storage technologies on the dispatch and the 

environmental effects of an energy system. In order to determine the environmental impacts, LCAs have already been 

prepared for various stationary battery storage systems. However, the number is still small [16]. In addition, efficiency, 

power dependence and life cycles are rarely considered [17]. To the author's knowledge, LCA of concrete applications 

of various battery storage devices in neighbourhood power networks have not yet been investigated. 

This paper searches for an optimal dispatch for a valve-regulated-lead-acid (VRLA), lithium-ion-iron-phosphate 

(LFP) and vanadium-redox-flow (VRF) battery by considering their efficiencies and life expectancies in on-grid and 

off-grid situations to deduce an adequate battery capacity. In order to address a future shift to BEVs, different shares 

are considered. Finally, a LCA, based on recent literature is conducted to evaluate the environmental impact of the 
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utilised storage systems. As a result, an open source optimisation model for the electricity supply of a residential 

district is created to address climate change by the utilisation of renewable energies and ESS under the consideration 

of security supply aspects as well as economic and ecologic factors. 

Background 

Recent literature applies energy system modelling mostly for component sizing, component location, comparative 

analysis and operational management [18]. The component design serves, among other things, to determine the 

required power, the number and the capacity of the generation and storage technologies used, for instance in Zhang et 

al. [11], Puri [19] and Huneke et al. [14]. The comparative analysis are used to compare different optimisation 

methods, such as the deterministic method compared to the generic method e.g. in Upadhyay and Sharma [20]. 

Optimisation of operational management is often aimed at minimising operating costs. In grid-connected models, it is 

possible to feed surplus electricity into the grid and thus sell it on the electricity exchange [21]. For example, Chen et 

al. are investigating a self-sufficient power grid with the aim of storing surplus electricity generated by renewable 

energies for a later utilisation [22]. Mustonen and Nanthavong analyse the electricity grid of a village over a 24-hour 

operating period and go into more detail on the non-linearity of the cost development of the electricity producers [23]. 

Kriett and Salani additionally integrate the influence of electromobility into the household grid they are investigating 

[24]. Investigations into environmental influences are more frequently linked to component design for instance in 

Kazemi and Rabbani [25] and Chedid and Rahman [26]. In the field of operational management, Stadler et al. 

investigate the influence of electromobility on the power grid of a house, whereby costs or carbon dioxide emissions 

can be optimised [15]. In addition to investigating environmental impacts in the household sector, other authors 

examine global or national energy systems and integrate environmental impacts into their optimisation e.g. in Rauner 

and Budzinski [9], Barteczko-Hibbert et al. [13] and Volkart et al. [10]. LCA is often used to determine the potential 

environmental impacts of products or processes [27]. Peters et al. identify 79 LCAs about lithium-ion-batteries and 

34 LCAs about electromobility [28]. The LCAs on electromobility examine the use of BEV in comparison to 

conventional vehicles, whereby the batteries are considered as part of the BEV [17]. Of the 79 studies, only a few 

investigate the production phase of stationary battery storage systems [16]. An example for the investigation of 

stationary battery storage is provided by McManus, which investigates the production of 1 kg or 1 MJ capacity of 

different battery types considering the energy densities of the technologies [4]. In addition to McManus, Rydh and 

Sandén determine the cumulative energy demand for a battery storage system with 50 kW power and 450 kWh 

capacity with an electricity supply of 150 kWh through photovoltaic over the production and utilisation phase. They 
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consider different battery technologies taking into account different discharge depths, efficiencies and energy densities 

[29]. In addition to this work on different battery technologies, Weber et al. analyse the provision of 1 MWh of 

electricity over 20 years by a vanadium-redox-flow battery, taking into account the production, utilisation and disposal 

phase [6]. A more recent comparison of stationary ESS is provided by Baumann et al. [5], which determine the carbon 

dioxide footprint and the life cycle costs for a wide variety of battery technologies on the basis of their energy densities, 

efficiencies, cycle life and costs [5]. 

Methods 

A techno-economic bottom-up model for a residential district based on hourly data is created and combined with an 

LCA for the utilised ESS. The energy system model is created by using the open energy modelling framework (oemof) 

[30], which is an open source framework developed at the University of Applied Sciences in Flensburg. Oemof 

optimises the modelled energy system with the goal of minimising the sum of variable costs (cvar) for the total period 

of time (T) according to equation (1) with f(p,s),t being the flow between its predecessor (p) and its successor (s) 

component in timestep (t) multiplied with the length of the timestep (τt) [31]. A full description of the framework 

contains the documentary of oemof [32]. The complete mathematical approach is explained in [33]. 

(1)                                                              𝑚𝑖𝑛: ∑ ∑ 𝑐(𝑝,𝑠),𝑡
𝑣𝑎𝑟 ∗ 𝑓(𝑝,𝑠),𝑡 ∗ 𝜏𝑡

(𝑝,𝑠)∈𝐹𝑡∈𝑇

 

The parametrisation of the model is realised by a literature research for specific technologic and economic data for 

power generation plants, ESS and load profiles representing households and BEVs. A simplified representation of the 

model is displayed in Figure 1. Scenarios are defined which consider different situations of grid operation. Off-grid 

as well as on-grid operation with different amounts of BEVs are investigated. Following, the dispatch optimisation of 

the scenarios for the time period of one year is carried out. Adding the ecological pillar to the model an LCA is 

conducted to evaluate the environmental burden of the utilised ESS. 
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Figure 1 Simplified energy system model 

Demand modelling 

The applied load profiles were metered with a resolution of 15-minutes during 2008 to 2011 for 497 households [34]. 

Tjaden et al. select 74 load profiles from 2010 with typical seasonal and daily performance of households electricity 

consumption and are closing data gaps to create a 1-second sampled load profiles [35]. The load profiles are again 

adapted to an hourly resolution and adjusted to the 2017 calendar year. The total demand accounts for 346,836 kWh 

per year with a maximum power demand of 98 kW. 

To model the electricity demand of BEVs load profiles published from Schäuble et al. [36] and created from Heinz 

[37] are utilised. Heinz creates different load scenarios for BEVs in his work [37]. In the model the load profile type 

3 is applied assuming that the BEV is only charged at home. The charge power accounts for 3.7 kW resulting in a total 

demand of 1,433 kWh per year. The load profiles are converted to hourly values and adjusted to the 2017 calendar 

year. Different load profiles for weekdays and weekends are applied. The amount of BEVs is varying over the defined 

scenarios. 

Energy generation modelling 

The energy supply is provided by combined heat and power (CHP), photovoltaics (PV) and the electricity grid. The 

CHP is fired with natural gas and designed based on the electricity load curve of the households. It is assumed that all 

generated heat will be consumed and sold at break-even for instance to provide thermal energy to a heat grid. The 

CHP is designed to reach 6,000 full load hours per year. Consequently an electric power of 30 kW resulting in a total 

power of 101 kW is installed [38]. The electricity generation from the CHP is not controlled by a load profile. It is 

only limited by the total maximum power and the variable costs. The variable costs of the CHP are containing costs 

for fuel, lubricating oil and maintenance, which are estimated based on [39]. To allocate the total variable costs to 

Electricity Bus

Load Profiles

Electric Vehicles

EPEX Spot Market

CHP

PV

Storage

(VRLA, LFP, VRF)

Heat Bus

Heat Demand

Grid Feed-In

Sink objectSource object Bus object Storage object

Oemof objects



6 

 

generated heat and electricity, the total efficiency method [40] is applied. This method is based on the thermal and 

electric efficiency of the CHP and a reference system thus securing a realistic allocation of the costs. Based on the 

above-mentioned assumption concerning the heat consumption the variable costs for heat are set to zero. The variable 

costs for the generated electricity account for 1.1307 €cent per generated kWh.  

To cover the remaining electricity demand PV is utilised. Assuming a generation of 180,000 kWh covered by the CHP 

and a total demand of 346,836 kWh a residual demand of 166,694 kWh exists. In Germany, the average PV system 

size accounted for 7 kWp for newly installed systems in 2018 [41]. By generating a load profile of a 7 kWp PV system 

located in Pforzheim, with a system efficiency of 15% [42] results in an electricity generation of 6,964 kWh per year. 

The load profile is generated with an hourly resolution by utilising the PV GIS of the European Commission [43], 

which exhibits a high accuracy [44]. This equals an installed capacity of 168 kWp. Applying a security factor of 10% 

results in 184 kWp installed capacity, which is distributed over 26 households. Operational costs for PV systems are 

caused by maintenance and operation [45]. Although being fixed costs those are allocated over the generated electricity 

as the amount of kWh generated is constrained. Thus, variable costs account for 5.528 €cent per kWh. 

As a reference system the model has the possibility to consume electricity from the electricity grid, which is 

represented by the European Power Exchange (EPEX) spot market prices of 2017. The hourly price profile is fed into 

the model. The electricity supply from the grid is only constrained by the hourly prices. Caused of errors raising when 

applying negative prices, all negative prices are set to zero. 

Battery modelling 

Three battery types are analysed based on available manufactures data. The SAGM 12V/205Ah (ampere hours) [46] 

represents a VRLA, the TR 12.8V/92Ah [47] a LFP and the VoltStorage SMART [48] a VRF. The utilised batteries 

are represented as a storage object in oemof [30]. According to oemof the storage object is defined by the nominal 

capacity, maximum input (charge rate) and output flows (discharge rate), capacity loss, initial capacity, inflow and 

outflow efficiency and the maximal depth of discharge (DODmax). Subsequently, the calculation of the needed 

parameters is explained. 

Generally, the nominal capacity of batteries is measured by Ah. To work in kWh the capacity is multiplied with the 

nominal voltage of the battery, assuming an ideal battery [49]. The installed capacity is estimated according to [50; 

51] which conclude that per kWp installed power PV one kWh of storage capacity is economically viable (Qinst,BatPV). 

The second analysed capacity (Qinst,BatLP) is calculated based on an average daily electricity consumption of the 

analysed residential district. Because of the possibility to trade electricity three days in advance at the EPEX, the 
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second analysed battery capacity is able to cover three days. Although the battery suffers from calendric and cycling 

degradation [18; 12] the capacity is assumed to be constant. 

The maximum discharge rate is calculated based on the installed capacity divided by the possible discharge time 

provided by the manufacturer. Thus, the capacity is secured to be available although higher discharge speeds might 

be possible. Due to the lack of data concerning charge rates the maximum charge rate is assumed to equal the 

maximum discharge rate. Only one datasheet [47] provides a charge rate, which is higher than the discharge rate. In 

contrast, in Yoshida et al. [52] the charge rate is lower than the discharge rate for a lithium-ion-battery, thus the 

assumption is a compromise. The total efficiency (DC-DC) is taken from Baumann et al. [5]. Monthly storage losses 

are based on Sterner and Stadler [53] and are converted into hourly efficiencies (ηstorage). By equating charge and 

discharge efficiency the discharge efficiency is calculated by equation (2) [21; 54]. Differences between ηcharge and 

ηdischarge can be assumed to be 5% [14] and result in a slight misallocation of storage losses. To include losses resulting 

from inverting AC to DC the DC-DC efficiency is multiplied with the square of the inverter efficiency of 95% [42] 

resulting in the total AC-AC efficiency. 

(2)                                                               𝜂𝑐ℎ𝑎𝑟𝑔𝑒 = 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = √
𝜂𝑡𝑜𝑡𝑎𝑙,𝐷𝐶−𝐷𝐶

𝜂𝑠𝑡𝑜𝑟𝑎𝑔𝑒

 

The minimal state of charge (SOCmin) is based on values from Baumann et al. [5]. The starting capacity (SOCstart) is 

set to 50% of the total installed capacity. 

The variable costs for the utilised electricity storage are calculated by using the ampere hours throughput model, thus 

considering their cycle life [55]. The Ah-model is applicable as it allows an estimation of battery cycle life without 

needing exact information of the analysed battery, although it neglects the exact process of (dis)charging [56]. It 

utilises the lifetime curve of the battery, which is provided by datasheets of the manufactures and displays the amount 

of cycles to failure depending on different DOD until end of life of the battery. Thus, it is easy to apply and is frequently 

used [17; 28; 21]. By applying the installed capacity (Qinst,bat) in Wh the total lifetime throughput (LT) is calculated as 

described in equation (3) [21]. Averaging different DOD (dn) and their corresponding cycles to failure (fn) results in 

an average LT value. The factor n depends on the considered DODmax. 

(3)                                                              𝐿𝑇𝑡𝑜𝑡𝑎𝑙 =
∑ 𝐿𝑇𝑛

𝑙=1 𝑛

𝑛
=

1

𝑛
∗ ∑(𝑄𝑖𝑛𝑠𝑡,𝑏𝑎𝑡 ∗ 𝑑𝑛 ∗ 𝑓𝑛

𝑛

𝑙=1

) 

By defining the calendric lifetime to be 10 years, which is the minimum lifetime for VRLA [5] a LT per year (LTyear) 

can be derived. Based on the LTyear variable costs are calculated based on literature data from [5]. They publish 
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operation and maintenance costs for batteries, not considering the electricity demand for periphery or battery 

management system (BMS). Those operational costs are already included in the AC-AC efficiency of the ESS [53]. 

In addition battery degradation costs are considered based on investment costs from [5]. Generally, the end of life of 

a battery is reached when the available battery capacity decreases to 80% of its initial capacity [57; 58]. Consequently, 

up to 80% of initial capacity is remaining [59; 57; 60]. Although other research suggest a non-linear degradation of 

the battery after reaching the 80% [61; 62] it is assumed that only a replacement investment of 20% (i) of the initial 

investment must be undergone as the stationary application of batteries is a less stressful application [60]. This is an 

optimistic assumption taken. As a result of the optimisation an application of 100% would lead to almost no ESS 

operation. Finally, BDCkWh are calculated according to equation (4) [21]. Adding the variable costs for operation and 

maintenance results in the total costs per kWhLT, which arise for every charged kWh in the ESS. 

(4)                                                              𝐵𝐷𝐶𝑘𝑊ℎ = 𝑖 ∗
𝐶𝑟𝑒𝑝 ∗ 𝑄𝑖𝑛𝑠𝑡,𝑏𝑎𝑡

𝐿𝑇𝑡𝑜𝑡𝑎𝑙

 

A summary of all parameters set in the model is depicted in Table 1. 

Scenario analysis 

Scenario I assumes a grid connected energy system with no BEV in the system. The scenario shall indicate how 

economically viable an ESS can be utilised in collaboration with PV and CHP compared to the consumption of 

electricity from the grid. The installed capacities of Qinst,BatPV, Qinst,BatLP are analysed, thus the scenario is divided into 

IPV and ILP. Furthermore, self-supply degree and autarky degree are calculated. All results are compared to a base 

scenario without an integrated ESS. 

Scenario II assumes a grid connected energy system now with 74 electric vehicles in the system. The installed 

capacities of Qinst,BatPV, Qinst,BatLP are again analysed, thus the scenario is divided into IIPV and IILP. It will display the 

impact of an increasing use of electro mobility on the operation of residential districts. 

Scenario III assumes an off-grid energy system and is analysed without any electric vehicle connected. The installed 

capacities of Qinst,BatPV, Qinst,BatLP are analysed, thus the scenario is divided into IIIPV and IIILP. As the energy demand 

cannot fully provided by the modelled electricity generation an extra electricity provider is installed. This emergency 

generation is integrated instead of the EPEX spot market and highly priced. Thus, it is only activated when electricity 

is missing. Consequently, this scenario will show whether a battery storage system combined with PV and CHP can 

supply the system autarky. 
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Table 1 Summary of parameters 

Energy generation CHP PV Grid 

Pinstalled,el [kW] 

Cvar,el [€cent/kWh] 

30 

1.131 

184 

5.528 

1,000,000 

EPEX Spot 2017 

    

ESS VRF LFP VRLA 

Qinst,BatPV [kWhinst] 

Qinst,BatLP [kWhinst] 

LTspez [kWhLT/kWhinst] 

Pmax,chargePV=Pmax,dischargePV [kWh] 

Pmax,chargeLP=Pmax,dischargeLP [kWh] 

ηstorage [%] 

ηcharge = ηdischarge [%] 

ηtotal,AC-AC [%] 

DODmax [%] 

SOCstart [%] 

Cvar,Bat [€cent/kWhLT] 

BDCkWh [€cent/kWhLT] 

Cvar,Bat,total [€cent/kWhLT] 

182 

2,850 

873 

25 

390 

98.75 

82.79 

69.53 

80 

50 

0.547 

0.916 

1.463 

182 

2,850 

3,854 

36 

570 

99.90 

93.08 

86.73 

77 

50 

1.297 

1.604 

2.901 

182 

2,850 

10,000 

18 

285 

99.29 

83.39 

68.54 

56 

50 

1.936 

5.269 

7.205 
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Life cycle assessment 

LCA is a preferred approach to quantifying potential environmental impacts and is frequently applied [17; 28; 63]. 

Due to its life cycle approach all stages of life concerning a product or process from material mining over procurement, 

production, use and end-of-life is considered. All material and energy inputs assigned to processes or products must 

be considered [27]. LCA is based on the ISO 14044, which is a framework how to conduct an LCA [64; 65]. 

The goal of the assessment is to provide an analysis of the applied ESS. It is supposed to assist on the decision which 

ESS to utilise considering the potential environmental impact. Figure 2 depicts the analysed product system and 

visualises the system boundaries. Production including transport and use phase are analysed. The end-of-life stage is 

disregarded as the analysed time period is one year. Furthermore, this approach is used in Zackrisson et al. [65]. 

Recycling processes are already available for VRLA but not yet established for VRF and LFP [5]. 

 

Figure 2 Analysed product system 

Often the functional unit is based on installed battery capacity e.g. in McManus [4]. That approach is impractical as 

ESS properties, especially lifetime and efficiency are varying [17; 16]. By applying the approach of the lifetime 

throughput, which was already introduced for the variable costs’ calculation for the ESS, the lifetime of the battery 

can be considered [17]. From manufactures data the specific lifetime throughput (LTspez) is derived following the 

equation (5) by averaging different DOD (dn) and their corresponding cycles to failure (fn). The factor n depends on 

the considered DODmax (see Table 1). 

(5)                                                              𝐿𝑇𝑠𝑝𝑒𝑧 =
∑ 𝑑𝑛 ∗ 𝑓𝑛

𝑛
𝑙=1

𝑛
 

Additionally, the AC-AC efficiency (see Table 1) is considered to calculate the electricity losses (Wloss) due to the 

storing process. LTspez is derived from equation (5) where ηtotal,AC-AC represents the AC-AC efficiency of the ESS (see 

equation 6) [17]. 

(6)                                                              𝑊𝑙𝑜𝑠𝑠 = 𝐿𝑇𝑠𝑝𝑒𝑧 ∗ (1 −
1

𝜂𝑡𝑜𝑡𝑎𝑙,𝐴𝐶−𝐴𝐶

) 

Component
manufacturing

Production

UseProduct 
manufacturing

Transport

Materials
Procurement

Material

Energy
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Consequently, the functional unit is 1 MWh discharged from the utilised ESS, without considering discharge due to 

losses. 

The International Reference Life Cycle Data System (ILCD) [66] midpoint impact assessment factors are applied as 

they contain the most advanced assessment factors according to Hauschild et al. [67]. There are 18 different impact 

categories defined in the ILCD. This study focuses on climate change, resources - mineral, fossils and renewables and 

ecosystem quality - freshwater ecotoxicity. This selection is based on Peters et al. [28]. 

Life cycle inventory 

The life cycle inventory for the ESS is based on a literature research and the ecoinvent 3.3 database [68]. The material 

procurement is primarily based on data from ecoinvent, whereas component and product manufacturing, transport and 

use phase are based on literature research thus being the foreground system. Procurement represents the background 

system. In the following the different inventories and methodology for the modelling of the LCA are described. 

The foreground system of the VRLA is modelled according to Spanos et al. by utilising their published inventory [17]. 

The battery management system (BMS) is modelled according to Ellingsen et al. [69], as they provide the most 

detailed inventory for BMS [16]. It substitutes the balancing and control electronics applied by Spanos et al. The share 

of the BMS of the total weight is not adapted. As Spanos et al. analyse a battery with an energy density of 34 Wh/kg 

the inventory is assumed to fit for the SAGM 12V/205Ah, which exhibits an energy density of 35.39 Wh/kg. 

The inventory for the production of LFP batteries is based on the work of Peters and Weil [16], which created unified 

inventories for lithium-ion-batteries. Zackrisson et al. describe the manufacturing process for 1 kg of LFP with an 

anode made of carbon [65], which is representing the utilised LFP TR 12.8V/92Ah. For the modelling default 

providers for BMS [69], pack housing [70], cell package [69], electrolyte [71], cathode [70] and anode binder [72] 

according to Peters and Weil [16] are set. The full inventory can be obtained from Peters and Weil [16]. As Zackrisson 

et al. analyse a battery with an energy density of 93 Wh/kg the inventory is assumed to fit for the TR 12.8V/92Ah, 

which exhibits an energy density of 95.74 Wh/kg. 

The inventory for the production of 1 kg of VRF battery is based on Weber et al. [6]. The energy density is taken from 

Weber et al. [6] as the datasheet does not provide any data. 

Preferably market processes from the ecoinvent database 3.3 are utilised to model the background system as those 

represent a consumption mix dependent on a region or product [68]. The production is assumed to take place in Europe, 

thus processes delivering energy are modelled when possible with European energy mixes. For the procurement of 

materials mostly global processes are applied, which use a global supply chain [68]. 
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To assess the transport from the production plant to the final user an average intra Europe transport distance of 600 

km is assumed [73]. Furthermore, it is assumed that the inverter is transported with the battery as one system. The 

inventory of the inverter is scaled to the needed maximum power for each ESS thus the inverter size is varying for 

each applied battery system. As a result of the process an amount of kWh installed capacity is calculated based on the 

energy densities of each ESS. 

The use phase is basically just converting the delivered installed capacity into a LTtotal by applying the LTspez for each 

ESS. Considering the efficiency, a part of the LTtotal is converted to losses, while the rest is usable electricity discharged 

from the battery. The considered electricity mixes to cover the battery losses is covered by the “market group for 

electricity, low voltage electricity, low voltage for Europe without Switzerland” from the ecoinvent database 3.3. 

assuming a usage in Europe. 

Results 

Dispatch optimisation – Scenario I 

The optimisation of scenario IPV shows that only the LFP and the VRF battery system are able to decrease the total 

electricity demand of the modelled system compared to the base scenario. The VRLA is only charged to cover its 

losses due to the constrained minimum state of charge, thus it is increasing the energy demand of the system by 1,498 

kWh. The energy system with a VRLA applied, consumes the most energy from the electricity grid and utilises the 

lowest amount of PV and CHP generated electricity. Consequently, it exhibits the lowest degree in self-supply and 

autarky. The energy system using the LFP battery system consumes the lowest amount of electricity and decreases 

the consumption by 17,968 kWh. Electricity supplied by the grid accounts for 62,417 kWh and is the lowest value 

achieved in scenario I. A high utilised share of PV and CHP increases the degree of self-supply by 10% and autarky 

by 6% compared to the base scenario. The VRF system reduces the overall electricity generation by 9,534 kWh and 

utilises the highest share of CHP and PV, which is mainly due to its comparatively high inefficiencies during charge, 

discharge and storage. A summary of the results is displayed in Figure 3. 

The ESS performances are displayed in Figure 4. PV electricity is mostly stored in the ESS followed by CHP and the 

grid. The VRLA exhibits the lowest amount of discharged electricity due to its expensiveness. The highest electricity 

losses are achieved by applying the VRF battery system, which suffers from the lowest total efficiency. The highest 

impact can be allocated to the losses during storing the electricity especially for higher installed capacities. The highest 

discharge – charge efficiency reaches the LFP system in scenario IPV with 84%. 
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When analysing the yearly demand curve of the base scenario it exhibits the typical patterns with a higher electricity 

demand during winter periods and lower during summer periods. The entire year, electricity is supplied by the 

electricity grid, but showing a small amount during the summer period. The average CHP electricity generation 

accounts for 18.23 kW and is increased to 18.8 kW by utilising the LFP. The CHP only charges electricity into the 

battery during winter periods, when electricity generation from PV is decreasing and EPEX prices are high. The 

electricity supplied by the grid is reduced and reaches its smallest value during summer periods. During winter periods 

grid electricity supply increases due to lower PV generation. Noticeable are peaks of grid electricity supply due to 

falling electricity prices up to 0 €cent per kWh. The average grid electricity charge power accounts for 0.2 kW over 

the year. The PV electricity feed-in the grid can be delayed by eight days compared to the base scenario. High 

electricity feed-in from PV is available from the 52nd day until the 305th day. The average PV charge power into the 

ESS accounts for 2.6 kW over the year. 

Utilising the VRF system, almost the same yearly curve occurs, showing a slightly higher charge of PV electricity 

into the battery over the year most likely due to the higher losses of the VRF battery. The average electricity power of 

CHP increases to 19.4 kW. PV and grid electricity are charged into the battery with an average power of 3.4 kW and 

0.4 kW respectively. Concerning the VRLA the dispatch optimisation results show almost the base scenario due its 

high battery degradation costs. 

Scenario ILP shows a tremendous increase in grid electricity consumption of 23,208 kWh for the VRLA and 31,883 

kWh for the VRF system. Only the LFP system slightly reduces the grid electricity consumption by 92 kWh. The 

VRLA and VRF systems store higher amounts of electricity generated by PV and CHP to cover their efficiency losses. 

This results in higher self-supply rates, as battery losses are considered as demand. Only the LFP system is able to 

deliver a significantly higher amount of electricity than in scenario IPV, which leads to a slight increase in the degree 

of autarky (+2%) and self-supply (+2%). The increase is also based on higher losses of the battery, which are covered 

by a higher electricity charge from PV. All results are summarized in Table 3. 

The analysed yearly demand curve exhibits higher charge power into the ESS by the electricity grid, especially during 

price periods when prices falling to 0 €cent per kWh. 



14 

 

 

Figure 3 Scenario I - utilized electricity generation for demand covering 

 

Figure 4 Scenario I storage charge/discharge performance 

Dispatch optimisation - Scenario II 

Comparing the two base scenarios additional 106,054 kWh per year are consumed in scenario II due to the electricity 

consumption of the electric vehicles. This extra demand is mostly covered by electricity from the grid, which almost 

doubles, followed by CHP and PV generation with an increase of 14,688 and 8,813 kWh per year respectively. 

The utilisation of the VRLA system shows the same results as in scenario I and is not further analysed. Again, the 

energy system using the LFP battery system generates the lowest amount of electricity and decreases the generation 

by 21,998 kWh compared to the base scenario. Grid delivered electricity accounts for 141,306 kWh and is the lowest 

value achieved in scenario II. A high utilised electricity share of PV and CHP generation increases the degree of self-

supply by 9% and autarky by 5% compared to the base scenario. The VRF battery system reduces the overall electricity 

generation by 9,942 kWh and utilises the highest share of CHP and PV generation. It reaches the same value for self-
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supply degree but a lower value for the autarky degree (63%) compared to the LFP battery system. A summary of the 

results is displayed in Figure 5. 

The ESS performances are displayed in Figure 6. PV electricity is mostly stored in the ESS followed by CHP and grid 

electricity. The VRF, which suffers from the lowest total efficiency, exhibits the highest losses. The highest efficiency 

regarding discharge – charge ratio reaches the LFP system in scenario IIPV with 85%, whereas the VRF system 

reaches 54%. Utilising the LFP battery system the CHP generation increases to 20.4 kW. The CHP is again charging 

electricity into the battery during winter periods, when electricity generation from PV is decreasing and EPEX prices 

are high. This occurs, when the CHP cannot provide enough electricity to cover the entire demand. Compared to 

scenario I those periods increased slightly. For the entire year the electricity supplied by the grid increased compared 

to scenario I, resulting in no periods of self-supply. During winter periods grid electricity supply again increases due 

to lower PV generation. Noticeable are again peaks of grid electricity supply due to low electricity prices. The average 

grid electricity charge power accounts for 0.25 kW over the year. The PV grid feed-in starting point can be delayed 

again. The average PV power charge rate accounts for 3.1 kW over the year. 

Utilising the VRF system, almost the same yearly curve occurs, showing a slightly higher charge of PV electricity 

into the battery over the year. The average electricity power of CHP increases to 20.6 kW. PV and grid electricity are 

charged into the battery with an average power of 3.5 kW and 0.6 kW respectively. 

Scenario IILP shows a tremendous increase in grid electricity consumption of 28,706 kWh for the VRLA and 37,335 

kWh for the VRF system. Only the LFP system reduces the grid electricity consumption by 11,922 kWh. The VRLA 

and VRF systems store higher amounts of electricity generated by PV and CHP to cover their efficiency losses. This 

results in higher self-supply rates, when battery losses are considered as demand. LFP and VRF system are able to 

deliver a significantly higher amount of electricity than in scenario IIPV, which leads to an increase in the degree of 

autarky (+6%) and self-supply (+7%) at least for the LFP system. The self-supply degree of the VRF system increases 

by 4% as the total losses are increasing as well. The autarky degree decreases to 57%. Only the LFP system can reduce 

total electricity demand significantly by utilising generated PV electricity. All results are summarized in Table 3. 

The analysed yearly demand curve exhibits higher charge power into the ESS by the electricity grid, especially during 

price periods when prices falling to 0 €cent per kWh. 
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Figure 5 Scenario II - utilized electricity generation for demand covering 

 

Figure 6 Scenario II storage charge/discharge performance 

Dispatch optimisation - Scenario III 

In general, the designed energy model is not able to sustain autarky. All three ESS can reach self-supply degrees over 

76% and autarky degrees over 87% for the analysed capacities in IIIPV and IIILP. Autarky periods during the year 

can be seen during periods of high PV electricity generation mainly in the middle of the year for all ESS. Although 

the VRLA and VRF systems are competitive compared to the LFP system in scenario IIIPV they lose ground in 

scenario IIILP caused by high losses during electricity storing. As the LFP system achieves the highest values of self-

supply (86%) and autarky degree (90%) in IIILP it is closer analysed. The lowest amount of emergency electricity 

and electricity consumption is reached utilising the LFP battery system in IIILP. The LFP storage behaviour in IIILP 

shows a decrease of electricity generation of 5,880 kWh per year and an increase of storage losses of 10,400 kWh 
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compared to IIIPV. The losses are mainly covered by PV electricity, which utilisation increases by 16,280 kWh. The 

total amount supplied by the emergency generation decreases by 12,976 kWh. 

The ESS performances are displayed in Figure 8. PV electricity is mostly stored in the ESS followed by CHP. The 

VRF exhibits the highest losses. The highest efficiency regarding discharge – charge ratio reaches the LFP system in 

scenario IIILP with 75%. 

 

Figure 7 Scenario III - utilized electricity generation for demand covering 

  

 

Figure 8 Scenario III storage charge/discharge performance 
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Figure 11 Comparison of the results 

for climate change 
Figure 10 Comparison of the results 

for Resources - mineral fossils and 

renewables 

LCA 

When discharging 1 MWh out of the ESS different installed capacities and masses are necessary due to different 

efficiencies and energy densities respectively. The highest mass 

achieves the VRLA due to its low energy density and LTspez. The 

low LTspez leads to high replacement rates thus to a high amount of 

total installed capacity to provide the 1 MWh. The high LTspez of 

VRF results in a low installed capacity but caused by the low energy density the mass is still higher than the mass of 

the LFP (see Table 2). The mass has a high impact on the impact category resources as depicted in Figure 10. The 

high utilised mass of VRLA results in a total resource depletion of 3.26 kg Sb-Eq and is significantly higher than the 

values for LFP (0.02 kg Sb-Eq) and VRF (0.01 kg Sb-Eq) and primarily caused by the lead production. The amount 

for LFP is to 60% based on the production of the BMS. The production of the VRF battery module contributes 40% 

to the total impact. For the impact category climate change most impacts occur due to electricity losses of the ESS, 

whereas LFP emitting the lowest total amount of kg CO2-Eq followed by VRF and VRLA (see Figure 11). The highest 

share of impacts in the battery system production hold cell production for LFP (15% of the total emissions). For VRF 

the highest impact is caused by the electrolyte production (15% of the total emissions) whereas the lead production is 

primarily causing most impacts during production for the VRLA battery system.  

  

ESS VRLA LFP VRF 

Capacity [kWhinst] 1.65 0.30 0.15 

Mass [kg] 47 3 6 

Table 2 ESS capacities and masses 
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The emissions for climate change for the analysed ESS are in line with recent literature [17; 5; 6]. Electricity losses 

contribute highly to the impact of freshwater ecotoxicity (see Figure 9). Again, the high amount of lead results in a 

high impact during lead production for the VRLA. The cell production for the LFP is main driver of the impact 

category (21% of total emissions), whereas the electrolyte production for the VRF battery module is emitting the most 

impacts for the VRF (14% of total emissions). 

Conclusions 

Generally, the LFP battery system shows the best constellation of variable costs, energy density, efficiencies and 

lifetime. It is followed by the VRF system on condition the installed capacity is 182 kWhinst. Then it is achieving 

similar degrees of self-supply and autarky when applied in the energy system model. Consequently, those ESS in 

combination with PV and CHP are competitive with the EPEX spot market under the taken assumptions in a grid 

connected system. The VRLA system is almost not operated during the analysed year caused by its low cycle life and 

high battery degradation costs respectively. High cycle life of LFP and VRF compensates their high specific costs per 

installed kWh. Due to the low battery degradation costs those ESS are operated more often during the analysed year. 

They are reaching only low amounts of used lifetime throughput, which is in line that a stationary application is less 

stressful for ESS. Thus, making the assumption of considering only 20% of replacement costs more likely. But it is 

questioning the approach only considering battery degradation costs based on cycle aging as the calendric aging might 

have more influence.  

In scenario I too high installed capacities in the grid connected system are not recommended as they only increase 

storage losses. However, an increasing demand due to BEVs can make an extension of storage capacity useful. 

Consequently, both demand curve and supply curve are decisive for the optimal storage capacity, as it can assist to 

compensate the daily shift of demand and PV supply. Self-discharge rates per hour are decisive for ESS with high 

capacities. Thus, making the VRF system the more recommended system for hourly energy shift due its high storage 

losses. The LFP system shows potential being a daily storage system for instance in off-grid situations as it is able to 

store electricity over time more efficiently. It is noticeable, that an significant increase of storage capacity only results 

in little increases of the degrees of self-supply and autarky, which is in line with [50] and [51]. 

The analysed ESS are not able to maintain autarky in the analysed system as the summer winter discrepancy cannot 

be closed. The LFP reaches the highest autarky degree in the off-grid scenario with an installed capacity of 2,850 

kWhinst. Combined with long-term storage system with low self- discharge rates autarky might be possible. VRF and 
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VRLA suffer from high inefficiencies in scenario III. Thus, they are not recommended for high capacities in off-grid 

scenarios as they need extra supply to maintain their minimum state of charge. 

The VRLA shows the highest impacts in all assessed categories due to its low energy density and low cycle life, which 

is significantly increasing the lead demand. The carbon dioxide emissions in the production phase of VRF and LFP 

are almost the same. During the use phase the high inefficiencies of the VRF system are contributing mainly to its 

impact. Substituting the European electricity mix with an electricity generation from renewables will reduce impacts 

due to losses for all three systems and all impact categories. Consequently, the source of electricity is an important 

criterion, when analysing the use phase of batteries. An increase of efficiency of the VRF system will result in an 

improvement in the categories of climate change and freshwater ecotoxicity. The LFP battery system consumes a 

higher amount of resources compared to the VRF system. The LFP system is able to store electricity with lower losses 

consequently its application is recommended in situations electricity is a scarce good. When electricity is over 

produced, for instance by PV, the VRF is recommended due to its lower variable costs and lower resource depletion. 

 

Table 3 Scenario I result 

 

 

electricity generation [kWh/a] IPV-Base IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF

Total 426,171     427,669     408,204     416,638     474,373     408,236     462,830     

CHP - total 159,764      160,949      164,712      169,701      184,444      164,836      184,010      

CHP - direct use 159,764           159,759           159,740           159,595           155,873           159,764           158,138           

CHP - stored -                   1,190               4,972               10,106             28,571             5,072               25,872             

PV - total 181,074      181,074      181,074      181,074      181,074      181,074      181,074      

PV - used 101,739           106,566           124,235           131,414           151,140           133,382           165,588           

PV - direct use 101,739           101,713           101,737           101,702           101,365           101,740           101,620           

PV - stored -                   4,853               22,498             29,711             49,775             31,641             63,968             

PV - grid feed in 79,335             74,508             56,840             49,661             29,934             47,693             15,486             

Grid - total 85,333        85,646        62,417        65,862        108,854      62,325        97,745        

Grid - direct use 85,333             85,184             60,746             62,341             89,554             49,224             63,177             

Grid - stored -                   463                  1,672               3,521               19,300             13,101             34,568             

electricity stored [kWh/a] IPV-Base IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF

Discharge -            181            24,614       23,197       45              36,108       23,901       

Loss, total -            6,325         4,528         20,141       97,602       13,707       100,508     

loss, charge -             1,081               2,002               7,458               16,219             3,422               21,411             

loss, discharge -             36                    1,816               4,822               9                      2,664               4,968               

loss, storing -             5,208               710                  7,860               81,374             7,621               74,129             

Charge -            6,506         29,142       43,338       97,647       49,815       124,409     

CHP - Charge -             1,190               4,972               10,106             28,571             5,072               25,872             

PV - Charge -             4,853               22,498             29,711             49,775             31,641             63,968             

Grid - Charge -             463                  1,672               3,521               19,300             13,101             34,568             

w/o IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF

self - supply - degree 61% 63% 71% 72% 71% 73% 76%

autarky degree 75% 74% 81% 78% 58% 83% 63%
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Table 4 Scenario II result 

 

Table 5 Scenario III result 

 

  

electricity generation [kWh/a] IIPV-Base IIPV-VRLA IIPV-LFP IIPV-VRF IILP-VRLA IILP-LFP IILP-VRF

Total 523,413     525,046     501,415     513,470     574,840     491,511     569,550     

CHP - total 174,452      175,630      179,035      183,610      196,719      181,052      202,356      

CHP - direct use 174,452           174,405           174,429           174,388           169,715           174,403           172,549           

CHP - stored -                   1,226               4,605               9,222               27,003             6,650               29,806             

PV - total 181,074      181,074      181,074      181,074      181,074      181,074      181,074      

PV - used 110,553           115,238           137,785           140,939           157,105           162,080           176,948           

PV - direct use 110,553           110,510           110,562           110,557           110,155           110,498           110,320           

PV - stored -                   4,728               27,223             30,382             46,949             51,583             66,628             

PV - grid feed in 70,522             65,837             43,290             40,135             23,970             18,994             4,127               

Grid - total 167,886      168,341      141,306      148,785      197,047      129,384      186,120      

Grid - direct use 167,886           167,856           139,109           143,903           172,960           104,036           130,462           

Grid - stored -                   485                  2,196               4,882               24,087             25,347             55,658             

electricity stored [kWh/a] IIPV-Base IIPV-VRLA IIPV-LFP IIPV-VRF IILP-VRLA IILP-LFP IILP-VRF

Discharge -            120            28,790       24,042       60              63,954       39,560       

Loss, total -            6,318         5,234         20,444       97,979       19,626       112,532     

loss, charge -                   1,069               2,337               7,656               16,284             5,742               26,175             

loss, discharge -                   24                    2,124               4,998               12                    4,718               8,223               

loss, storing -                   5,225               773                  7,790               81,683             9,166               78,134             

Charge -            6,438         34,024       44,486       98,039       83,580       152,092     

CHP - Charge -                   1,226               4,605               9,222               27,003             6,650               29,806             

PV - Charge -                   4,728               27,223             30,382             46,949             51,583             66,628             

Grid - Charge -                   485                  2,196               4,882               24,087             25,347             55,658             

self - supply - degree 54% 55% 63% 63% 62% 70% 67%

autarky degree 63% 62% 68% 65% 51% 74% 57%

electricity generation [kWh/a] IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF

Total 418,585       402,920       416,350       471,223       397,041       463,650       

CHP - total 190,301         187,547         193,583         230,223         194,644         228,354         

CHP - direct use 171,531               171,531               171,531               167,060               171,531               169,114               

CHP - stored 18,770                 16,016                 22,052                 63,163                 23,113                 59,240                 

PV - total 181,074         181,074         181,074         181,074         181,074         181,074         

PV - used 128,108               131,433               135,106               171,714               147,713               172,983               

PV - direct use 103,632               103,632               103,632               103,632               103,632               103,632               

PV - stored 24,477                 27,801                 31,475                 68,082                 44,081                 69,351                 

PV - grid feed in 52,966                 49,642                 45,968                 9,361                   33,362                 8,092                   

Emergency Generation - total 47,210           34,299           41,693           59,925           21,322           54,222           

Emergency Generation - direct use 47,210                 34,299                 41,693                 51,760                 21,322                 47,477                 

Emergency Generation - stored -                      -                      -                      8,165                   -                      6,745                   

electricity stored [kWh/a] IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF

Discharge 24,464         37,375         29,981         24,384         50,352         26,614         

Loss, total 18,783         6,442           23,546         115,026       16,843         108,722       

loss, charge 7,183                   3,010                   9,212                   23,156                 4,616                   23,291                 

loss, discharge 4,873                   2,757                   6,232                   4,857                   3,714                   5,532                   

loss, storing 6,727                   675                      8,101                   87,013                 8,512                   79,898                 

Charge 43,247         43,817         53,527         139,410       67,194         135,336       

CHP - Charge 18,770                 16,016                 22,052                 63,163                 23,113                 59,240                 

PV - Charge 24,477                 27,801                 31,475                 68,082                 44,081                 69,351                 

Emergency Generation - Charge -                      -                      -                      8,165                   -                      6,745                   

IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF

self - supply - degree 76% 79% 79% 85% 86% 87%

autarky degree 82% 88% 82% 64% 90% 66%
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Nomenclature 

BDCkWh Battery Degradation Costs 

BEV Battery Electric Vehicle 

BMS Battery Management System 

CHP Combined Heat and Power System  

DOD Depth of Discharge 

EPEX European Energy Exchange 

ESS Electrical Storage System 

ILCD International Reference Life Cycle Data System 

LCA Life Cycle Assessment 

LFP Lithium-Ion-Iron-Phosphate Battery 

Oemof Open Energy Modelling Framework 

PV Photovoltaic System 

SOC State of Charge 

VRF Vanadium-Redox-Flow Battery 

VRLA Valve-Regulated-Lead-Acid Battery 

Units 

Ah  Ampere hours 

CO2-Eq  Carbon Dioxide Equivalents 

CTUh.  Comparative Toxic Unit 

kWhinst  Kilowatt Hours Installed 

kWhLT  Kilowatt Hours Lifetime Throughput 

Sb-Eq  Antimony Equivalents 
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