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Abstract

The emergence of an inverted U-shaped environmental Engel curve (EEC), which describes

the relationship between household income and pollution, is mainly attributed to a shift in

households’ preferences towards environmental quality following income growth. At the same

time, such a shift might be difficult to predict due to the issue of displacement effects of

pollution costs; this occurs when individuals living in higher-income regions transfer pollution

costs to lower-income regions, so that higher environmental quality in a region is achieved

at the detriment of other regions. This paper utilizes longitudinal data on household carbon

dioxide emissions aggregated at the regional level for the 20 regions of Italy within the period

1995-2008, in order to derive accurate estimates of households’ elasticities for environmental

degradation, as well as to test the hypothesis of displacement effects. Our results reveal the

emergence of a U-shaped relationship between household emissions and income, whereas the

displacement effects hypothesis does not find empirical support, thus suggesting that negative

environmental outcomes are not externalized. Ultimately, these findings indicate a progressive

increase in the marginal utility for non-environmental goods by Italian households, calling for

a sustained effort by the institutions to increase citizens’ awareness on environmental matters.
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1 Introduction

Contrarily to the environmental Kuznets curve (EKC), the relationship between income and en-

vironmental outcomes defined by the environmental Engel curve (EEC) remains a hitherto little-

investigated topic within the empirical literature. The environmental Engel curve describes the

relationship between household income and the amount of pollution embodied in the goods and

services that the same households consume. Differently from the EKC, the EEC hence focuses

exclusively on environmental outcomes deriving from household activities, with the aim of fur-

nishing estimates of individuals’ elasticities for environmental degradation (Levinson and O’Brien,

2019[50]). In broad terms, the aggregate inverted U-shaped relationship between pollutants and

national income assumed by the EKC hypothesis can be explained by three macro-drivers affect-

ing the economy as a whole: the scale, composition, and technique effects (Brock and Taylor,

2005[14]); among the latter, foremost importance has been provided to the technique effect, which

namely describes the role on environmental outcomes exerted by technical progress. Specifically,

after the initial stages of development, because of improvements in technology, an economy man-

ages to generate the same level of production utilizing less amounts of inputs per unit of output,

and to substitute older and more polluting technologies with cleaner and more efficient ones. At

the same time, as reported by Kaika and Zerva (2013)[42], technical progress focuses on the eco-

nomic activity of production, rather than that of consumption; because of that, the EKC pattern

driven by the technique effect eventually results to be more likely related to environmental out-

comes deriving from industrial (economic) activities, more than from a switch in consumption from

non-environmental to environmental goods by consumers.

In light of this, studies focusing on household environmental outcomes, have mainly attributed

the emergence of inverted U-shaped patterns between income and pollution to changes in individu-

als’ preferences for environmental goods following increases in their level of income, holding prices,

technologies, and regulations fixed (Levinson and O’Brien, 2019[50]; Plassmann and Khanna,

2006[66]; Pearce, 2003[62]; Selden and Song, 1995[72]); in other words, the shift in individuals’

preferences with respect to demand for environmental quality following changes in their level of

income. Important theoretical contributions have thus addressed this issue by examining the in-

come elasticity of demand of individuals for environmental quality; specifically, they showed that in

order to validate the inverted U-shaped relationship between income and pollution, environmental

quality must result as an income-elastic commodity (Plassmann and Khanna, 2006[66]; Pearce,
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2003[62]); looking at Fig. 1, where E is the demand for environmental quality of individuals, and

G is individuals’ income, this entails an elasticity for environmental demand higher than one, υ>1,

which means that individuals perceive environment as a luxury good (Pearce, 2003[62]).

[INSERT FIG.1 ABOUT HERE]

Nonetheless, several critical comments have been raised on the view according to which incre-

ments in the level of income of individuals are associated to a higher propensity for environmental

quality. First, even though suitable preferences develop necessary and sufficient conditions for the

emergence of a EKC pattern, there is no guarantee that such suitable preferences exist; indeed, if

individuals do not exercise enough environmental effort as they become richer, then, even the most

sophisticated and effective abatement technologies cannot prevent pollution from increasing (Kaika

and Zerva, 2013[42]). In this regard, it thus becomes essential, for the emergence of a virtuous

environmental pattern, that the marginal utility for non-environmental goods decreases and the

marginal disutility for environmental degradation increases following income growth (Bimonte and

Stabile, 2017[13]). Second, another difficulty in predicting the effect of a shift in individuals’ pref-

erences is that such a shift may be rather attributed to spatial conditions related to displacement

effects of pollution costs (Roca, 2003[68]). This occurs when individuals living in a certain region

transfer the costs of pollution to lower-income regions, so that they can maintain high and raising

levels of consumption without dealing with the associated environmental costs (Dinda, 2004[25];

Roca, 2003[68]). The displacement of pollution costs can occur through different means, such as

exchange of goods (Muradian and Martinez-Alier, 2001[57]), political factors (Arrow et al., 1995[6];

Anderson, 1992[4]), social conflicts (Torrace and Boyce, 1998[77]), and other means (for a detailed

review, see Roca, 2003[68]). Ultimately, however, from an empirical standpoint little is known

about the behavior of households on environmental choices; this is mainly due to the fact that

the vast majority of the empirical studies have so far generally relied upon the standard EKC

framework, utilizing data which did not discriminate by pollution source, thus pooling together

pollution levels deriving from both economic and household activities (Kaika and Zerva, 2013[42]).

The few empirical contributions which conversely focused on the EEC to analyze the relationship

between household pollution and income, mostly relied upon (non aggregated) micro-level data

(see, e.g., Levinson and O’Brien, 2019[50]; Bimonte and Stabile (2017)1; Allan et al., 2015[3]).
1Even though Bimonte and Stabile (2017)[13] use the term "environmental Kuznets curve" in their analysis, it is
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This paper aims to expand the empirical literature on the EEC by assessing the relation-

ship between household pollution and income through an aggregated environmental Engel curve.

Specifically, we utilize data on carbon dioxide (CO2) emissions deriving from household activities

aggregated at the regional level for the 20 regions of Italy, covering the time span from 1995 to

2008, in order to furnish accurate estimates of household income elasticities for environmental

degradation; that is, we want to investigate whether the inverted U-shaped relationship between

income and pollution posited in the EKC literature also holds when considering the EEC, as pre-

dicted by theoretical studies on individuals’ environmental preferences. To such aim, we utilize the

NAMEA dataset provided by the Italian National Institute of Statistics (ISTAT), that is one of

the few dataset, to the best of our knowledge, which discriminates data on pollution by emission

source (namely, emissions deriving from household activities and emissions deriving from economic

activities), thus ruling out all emissions which do not derive from household activities2. Overall,

the usage of panel data presents notable advantages over cross-sectional and time series data, such

as the possibility to control for individual heterogeneity and to increase the degrees of freedom. In

addition, we rely upon robust spatial econometric techniques to test the hypothesis of displacement

effects3, according to which the costs of pollution are transferred from individuals living in higher-

to individuals living in lower-income areas. The adoption of a spatial perspective in our analysis is

further motivated by a growing strand of literature which has demonstrated the existence of sig-

nificant spatial spillovers in gas emissions among neighboring regions within countries (Zhou and

Wang, 2018[83]; Marbuah and Amuakwa-Mensah, 2017[54]; Kang et al., 2016[43]). Specifically,

these studies have proven how gas emissions in specific regions are heavily influenced by emissions

in neighboring regions, so that the correlation of emissions takes place across space, beside time.

In light of this, if spatial autocorrelation is detected, the non incorporation of spatial components

in the analysis might lead to misleading estimates due to omitted-variable bias. The rest of the

paper is organized as follows. In Section 2, we present a summary of the relevant literature review.

more correct to talk about "environmental Engel curve", since the authors are dealing specifically with income and

environmental household data.
2In a previous study, Mazzanti et al. (2008)[55] utilized the same NAMEA dataset to explore the income-pollution

relationship in Italy, but they focused conversely on emissions deriving from economic activities.
3Specifically, we expand the classical methodology vastly utilized in the spatial literature which usually relies

upon estimates based on the Maximum-Likelihood (ML) principle, by utilizing a two-step efficient GMM estimator.

The latter allows us to estimate standard errors which are robust to heteroskedasticity and autocorrelation, and has

computational advantage over the conventional ML method; in primis, it does not required any a priori specification

of the distributional form of the data. The advantages of utilizing spatial econometrics to test for the hypothesis of

displacement effects are explained in detail in Section 3.2.
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In Section 3, we present the data and the methodology. Section 4 reports the empirical results of

our analysis. Finally, Section 5 concludes.

2 Literature review

As mentioned above, in the literature, the vast majority of studies exploring the relationship be-

tween income and pollution have tested the EKC framework, namely pooling together pollution

levels deriving from household and economic activities. Within this context, since the seminal con-

tributions provided by Grossman and Krueger (1991)[36] and Panayotou (1993)[59], the inverted

U-shaped relationship between income and pollution posited by the EKC has been tested by sub-

sequent studies utilizing different econometric methodologies, using various types of environmental

indicators4, and considering different sets of countries (for a detailed literature review, see e.g.,

Muhammad and Sinha, 2018[74]; Kaika and Zerva, 2013[42]). Despite of this, results still remain

inconclusive.

On the other hand, the EKC hypothesis has also been subject to severe criticism with regard

to some of its specific assumptions, which can be easily extended to the EEC; some of these issues

include: the assumed normal distribution of the income (Stern et al., 1996[76]), multicollinearity

(Jaunky, 2011[41]), neglected reverse causality issues between income and pollution (Barassi and

Spagnolo, 2012[10]), lack of microfoundations (McConnell (1997)[56]), etc. In addition, some au-

thors have posited concerns over the original model specification of the EKC based on the classical

growth-environment nexus (Holtz-Eakin and Selden, 1995[38]; Shafik, 1994[73]; Selden and Song,

1994[71]; Grossman and Krueger (1991)[36]); indeed, the latter does not consider the impact ex-

erted by other relevant variables potentially affecting environmental outcomes, thus creating issues

of omitted variable bias. To cope with this, the growth-environment nexus has been subsequently

integrated with different sets of additional covariates, such as population density (Marbuah and

Amuakwa-Mensah, 2017[54]; Aklin, 2016[1]), urbanization rate (Pata, 2018[60]; Zhang and Zhao,

2014[82]), trade openness (Ozatac et al., 2017[58]; Ertugrul et al., 2016[32]), tourism (Le and

Quah, 2018[47]; Dogan and Aslan, 2017[26]), and energy consumption (Le and Quah, 2018[47];

Wolde-Rufael and Idowu, 2017[81]; Baek, 2015[7]).
4CO2 emissions generally represent one of the most widely used environmental indicators for evaluating the

EKC pattern. Besides, due to their widespread effect of propagation (Kaika and Zerva, 2013)[42], carbon dioxide

emissions represent a suitable indicator to conduct a spatial analysis (Marbuah and Amuakwa-Mensah, 2017[54]).
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Studies focusing on the EEC have generally not utilized, as controls, the variables described

above, mainly due to their macroeconomic nature. Rather, they relied upon variables capturing

socio-demographic characteristics. For our analysis, following Levinson and O’Brien (2019)[50]

and Druckman and Jackson (2016)[28], we extend the growth-environment nexus by considering

household size; the latter variable has indeed been proven to exert a crucial impact on the levels

of household carbon emissions (Druckman and Jackson, 2016[28]), since households with more

members generally benefit from economies of scale, thus being more inclined to have higher levels

of emissions (Baiocchi et al. 2010[8]; Weber and Matthews, 2008[80]; Tukker et al. 2010[78]).

With reference to the Italian scenario, the relationship between income and pollution has

mainly been explored testing the validity of the EKC pattern, using different methodologies and

levels of aggregation of the data. Nonetheless, mixed results emerged when comparing these

studies. Mazzanti et al. (2008)[55], provided a significant contribution to the literature by utilizing

the NAMEA dataset. Specifically, they tested the presence of the EKC hypothesis for different

types of pollutants deriving from economic activities, utilizing data for the 20 Italian regions

disaggregated by sector (industry, manufacturing, and services, respectively) covering the time

frame 1990-2001. From their analysis, different results emerged with reference to CO2 emissions

depending on the sector. Cialani (2007)[16], utilizing time series data at the nationwide level for

a time period spanning from 1961 to 2002, did not find significant evidence for the validity of

the EKC hypothesis for CO2 emissions. Sica (2014)[75] utilized both panel and cross-sectional

data disaggregated at the provincial level, in order to test the validity of the EKC hypothesis for

different sources of pollutants over a time horizon spanning from 1990 to 2000. From this analysis,

evidence for the existence of the EKC for CO2 emissions emerged when considering a sub-sample

of higher-income provinces. One of the main contributions of this study is represented by the

relevance attributed to the geographical location of units, thus highlighting the importance of the

geographical dimension when testing the EKC hypothesis for the Italian scenario. Coderoni and

Esposti[18] slightly deviated from the mainstream analysis, considering the relationship between

emissions deriving from agricultural activities and agricultural productivity, using a panel data

disaggregated at the regional level for two different time periods (1951-2008 and 1980-2008). From

the empirical estimates, mixed results emerged, which differed depending on model specification,

estimator utilized, and time period considered; this study is the only relevant one stressing the fact

that Italian regions are likely to denote spatial dependence, especially due to their possibility of

being highly localized in terms of sources and effects. Nonetheless, spatial interactions among units
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were not taken into account in the analysis. On the other hand, the only contribution focusing

specifically on individuals’ environmental outcomes is provided by Bimonte and Stabile (2017)[13];

nonetheless, these authors utilized land consumption as an environmental indicator instead of CO2

emissions. From their analysis, a U-shaped pattern emerged between income and land consumption,

thus denoting a prevalence of private over social valuation of resources for Italian consumers (i.e.,

following income growth, the marginal utility in consuming non-environmental goods is proved

to overcome the marginal disutility for environmental degradation). Conversely, similar studies

focusing on the EEC but considering instead different types of gas emissions as environmental

indicator, detected the emergence of an inverted U-shaped pattern between household income and

pollution for the United States (Levinson and O’Brien, 2019[50]) and New Zealand (Allan et al.,

2015[3]) for most air pollutants. As regard the hypothesis of displacement effects of pollution

costs from higher- to lower-income regions, to the best of our knowledge, the latter has been

tested empirically by only one relevant contribution provided by Maddison (2006)[53], exploring

the EKC framework. Nonetheless, the author, considering different types of pollutants (but not

carbon dioxide emissions) and utilizing a spatial econometric framework for a sample of different

countries, detected mixed results depending on pollutant type.

3 Data and methodology

3.1 Data

For our analysis, we constructed a balanced panel data comprehensive of longitudinal observations

of household data aggregated at the regional level for the 20 Italian regions, spanning from the

years 1995 to 20085. For the data on CO2 emissions, we rely on the NAMEA (National Accounting

Matrix including Environmental Accounts) and ISPRA (Institute for Environmental Protection and

Research) dataset. The NAMEA dataset is composed of two related dataset provided by ISTAT

(the Italian National Institute of Statistics) which report, respectively, the CO2 emissions from 1995

to 2008 at the nationwide level, and the levels of CO2 emissions deriving from both household and

economic activities aggregated at the regional level for the year 2005. The ISPRA dataset contains

detailed information on the SNAP (Simplified Nomenclature for Air Pollution) classification of
5As discussed by Bimonte and Stabile (2017)[13], this particular time frame allows us to reduce the potential

issue of structural breaks, since it excludes the periods of the Italian economic boom and of social reforms (which

originated, respectively, in the early ‘50s and ‘70s) and the financial crisis (which started to spread in 2008).
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emissions per sector and process at the regional and provincial level, and it is used by ISTAT

to derive the shares of CO2 emissions, measured in metric tonnes, deriving from both household

and economic activities at the regional level . We replicate the ISTAT methodology utilizing the

NAMEA and ISPRA dataset to compute the levels of CO2 emissions deriving from household

activities aggregated at the regional level for the remaining years6. Subsequently, we derive the

average level of carbon dioxide emissions per household in each region. Data on household income

are retrieved from an additional ISTAT dataset, which provides data on average real per household

personal income (in Euros) for each region. Finally, for what regards information on household

size, we rely on the regional dataset provided by ISTAT, which reports the average number of

individuals per household in each region. Contrarily to other European countries, Italy has the

peculiarity of presenting a notable geographical gap in the income level among regions, especially

when differentiating between Northern and Southern Italian regions; considering this, descriptive

statistics for the variables utilized in the analysis are provided in Tab. 1 clustered by geographical

localisation7.

[INSERT TAB.1 ABOUT HERE]

From Tab. 1, it is possible to observe how the mean values for income and emissions result to

be higher in Northern Italy (and slightly higher in North-Western regions than in North-Eastern
6The ISTAT methodology to compute gas emissions deriving from household activities aggregated at the regional

level is extremely exhaustive. Specifically, the quantities of CO2 emissions are derived from the ISPRA dataset, and

broken down by process according to the SNAP classification. The latter are then attributed to households at the ag-

gregate regional level following two steps; firstly, a qualitative association between each process of the SNAP classifi-

cation and household activities is performed; household activities are classified into three different items: "Transport"

(including household emissions deriving from the usage of fuel for private transport), "Heating" (including household

emissions deriving from the usage of heating systems, electricity consumption, etc.) and "Other" (including household

emissions deriving from all the other activities). Secondly, quantitative allocations of CO2 emissions belonging to

each SNAP process to the activities in which the process takes place (identified in the first step) follows. The detailed

ISTAT methodology is available here: https://www.istat.it/it/files//2011/02/Nota-metodologica11.pdf. The

two NAMEA dataset can be found, respectively, here: https://www.istat.it/it/archivio/13212 and here: https:

//www.istat.it/it/archivio/12571. The ISPRA dataset is available here: http://www.sinanet.isprambiente.

it/it/sia-ispra/inventaria/disaggregazione-dellinventario-nazionale-2015/view.
7The North-West localisation includes the regions of: Piemonte, Valle d’Aosta, Lombardia, Liguria, and Toscana;

the Nort-East: Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia-Romagna, Umbria, and Marche; the

South-West: Sardinia, Lazio, Abruzzo, Molise, and Campania; the South-East: Puglia, Basilicata, Calabria, and

Sicilia.
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regions) than in Southern Italy (where South-Eastern regions denote lower mean values with respect

to South-Western regions), thus indicating reasonable geographical disparity. As regard household

size, the dispersion among the data results to be more reduced if compared to the other variables,

thus denoting a higher degree of homogeneity for this variable among regions. Overall, Italy

represents a high-income country, the third-largest economy in the Eurozone and the eighth-largest

economy in the world. In comparison to the other countries of the European Union (EU), in

2016, Italy ranked as the third EU country in terms of total amount of CO2 emissions (358,140

Kilotonnes), before France (331,533 Kilotonnes) and after Germany (775,752 Kilotonnes) and the

United Kingdom (367,860 Kilotonnes) (European Commission, 2017[19]). Additionally, in the same

year, CO2 emissions accounted for over the 80% of all greenhouse gas (GHG) emissions. When

decomposing carbon dioxide emissions by source, it can be noted how, for our considered time span,

the total level of CO2 emissions deriving from economic activities exceeded considerably those

deriving from household activities (Fig. 2), when considering both Northern and Southern Italian

regions. In addition, such gaps remained pronounced throughout all the considered time horizon;

nonetheless, both the two sources of emissions registered a decrease in both the two geographical

clusters starting from 2004, with such a decrease being more noticeable for carbon dioxide emissions

related to economic activities in Northern Italian regions. Ultimately, as highlighted by Sica

(2014)[75], the gap in the levels of income and emissions among Italian regions results to be

wider compared to other countries which denote a higher degree of homogeneity among different

administrative areas (e.g., Germany). As a result, this fact provides a suitable framework to

analyze the presence of displacement effects of pollution costs from richer to lower-income regions.

[INSERT FIG.2 ABOUT HERE]

3.2 Methods

In light of the considerations expressed above, we model CO2 emissions deriving from household

activities as a function of household income and household size:

co2it = α0 + α1incit + α2(incit)2 + α3hsizeit + ϵit

i = 1,...,N; t = 1,...,T
(1)
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where co2it represents carbon dioxide emissions per household deriving from household activ-

ities for region i in year t; incit is real per household personal income, and hsizeit is the mean

household size. To be able to interpret the coefficients as elasticities, we take the natural loga-

rithm of all the variables. As it was stressed above, an expanding strand of studies examining the

evolution of CO2 emissions (both in Italy and in other countries), has provided strong evidence

for the existence of spatial correlation of carbon dioxide emissions among regions. Subsequently,

to control for potential omitted-variable bias, with the aim of providing more reliable and robust

estimates, we extend the non-spatial model of Eq. (1) to allow for spatial interactions8. Following

Burnett et al. (2013)[15], we introduce a spatial autoregressive model with fixed-effects (SAR-FE).

The latter allows to control for unobserved individual time-invariant heterogeneity, and takes into

account the spillover effects of CO2 emissions among households living in different regions. The

SAR-FE model writes as follows:

ln(ct) = ρW ln(ct) + Xtη + µ + ϵt (2)

where ct is the column vector including the levels of per household CO2 emissions for the

20 Italian regions at year t, Xt is a (NT x k) matrix of the explanatory variables (always in

logarithmic form), η is the column vector of the coefficients for the explanatory variables, µ is

the column vector containing individual-specific effects to control for time-invariant characteristics

specific for households living in each region, and ϵt is the column vector of the error terms. Finally,

W is the spatial weight matrix of dimension (N x N), whose entries wij capture the level of spatial

dependence among spatial units, with ρ the scalar coefficient measuring the strength of this spatial

dependence. In other words, the level of spatial dependence of household emissions among regions

is captured by the spatially lagged dependent variable W ln(ct); specifically, the value of carbon

dioxide emissions deriving from household activities in region i is influenced by a weighted average

of household emissions deriving from neighboring regions through the spatial weight matrix W . To

test the validity of the SAR-FE model against other forms of spatial panel specifications, we utilize

standard and robust Lagrange Multiplier (LM) tests for fixed-effects panel data models developed

by Debarsy and Erthur (2010)[22], conducted on the estimated residuals of the non-spatial model.

In the spatial econometric literature, there is no precise economic theory behind the selection

of a particular spatial weight matrix, so that different options are available based on discretionary
8As it will be discussed in detail below, the usage of spatial econometric techniques further represents a suitable

tool to analyze the presence and magnitude of displacement effects in pollution costs.

9



criteria (LeSage and Pace, 2009[48]). The most utilized matrix forms generally rely on the principles

of boundary and distance among spatial units. Authors adopting the distance approach usually

follow the principle of inverse distance between the centroids of spatial units (Pécastaing et al.,

2018[61]; Baudino, 2016[11]; Alderighi and Baudino, 2015[2]). Conversely, studies following the

boundary approach (see, e.g., Ciccarelli and Elhorst, 2018[17]; Wang, 2016[79]), commonly utilize

the standard contiguity matrix made up of zeros along the main diagonal (to avoid a spatial unit

to neighbor with itself) and of the spatial entries wij elsewhere (the latter being equal to 1 if

spatial units i and j share a border and 0 otherwise), so that regions sharing a border spatially

interact with one other. Nonetheless, such matrices have some limitations when certain issues arise.

First, the main problem in utilizing a contiguity matrix is that in case of isolated spatial units (or

"islands", i.e., units which do not share a border with any other neighbor), the spatial weights may

not provide reliable measures, since the spatial effects associated to the isolated spatial units are

not considered. Second, a potential issue associated to matrices based on the principle of inverse

distance refers to the spatial distribution of regions. Indeed, in case of an uneven distribution of

the latter, the quality of results provided by the spatial weights might decrease.

A more refined approach to model the distance among spatial units which addresses these two

issues, is represented by the Delaunay triangulation (see, e.g., Darshing, 2017[24])9. In our specific

case, we have the presence of both isolated neighbors and uneven spatial distribution of units (even

though the second issue appears to be less severe than the first one), and this mainly due to the

presence of the two islands of Sicily and Sardinia. Therefore, in order to provide more reliable

measures for the spatial weights, we construct our spatial weight matrix adopting the Delaunay

triangulation approach. Fig. 3 reports the Italian map at the regional level with the interactions

among the centroids of the spatial units obtained through Delaunay triangulation10.

[INSERT FIG. 3 ABOUT HERE]
9Formally: let S represent the set of points in the d-dimensional space Rd, with Conv(S) the convex hull of S,

and Ω the domain in Rd defined by Conv(S). Denote then Tr as the simplicial covering space of Ω = Conv(S)

so that Ω =
∪

K∈Tr
K, with K being a simplex; Tr is defined as a Delaunay triangulation of Ω = Conv(S) if the

open circumscribed sphere associated to its elements is empty. In other words, with reference to our case, when no

point of S in the R2 dimensional space lies inside the circumscribed circle associated to any simplex K (which in

the 2-dimensional space is represented by a triangle).
10All the computations were carried out in R using the Bowyer-Watson algorithm.
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Because of the presence of the spatially lagged dependent variable in the right hand side of Eq.

(2), OLS estimates are not suitable, since they would lead to biased and inconsistent results (LeSage

and Pace, 2009[48]). To cope with this issue, most studies in the spatial econometric literature have

been relying upon either the maximum likelihood (ML) or the quasi-maximum likelihood (QML)

estimation methods (Higashi, 2018[37]; Kla and Önder, 2018[46]; Baudino, 2016[11]; Burnett et

al., 2013[15]) to estimate spatial autoregressive models. On the other hand, compared to the

ML and QML estimators, the generalized method of moments (GMM) estimator presents some

notable advantages in terms of computational simplicity and asymptotic efficiency, requiring weaker

distributional assumptions and being robust to heteroskedasticity and deviations from normality.

Particularly, in the presence of heteroskedastic error terms, the standard ML estimator for the

SAR model assuming independent and identically distributed (i.d.d.) disturbances is generally

inconsistent; conversely, the GMM can be robust when its moment functions consider the presence

of unknown heteroskedastic disturbances (Lin and Lee, 2010[51]). In addition, the GMM results to

be asymptotically as efficient as the ML estimator when the normality condition is satisfied, and

asymptotically more efficient than the Gaussian QML estimator otherwise (Liu et al., 2010[52]).

Even though we have a moderate sample of cross-sectional units, Monte Carlo simulations testing

finite-sample properties have proven that the GMM estimator does not perform badly in cases

when N = 20 and T > 10 (Everaert and Pozzi, 2004[33]). In light of all these considerations,

following Drukker et al., 2013[29], we estimate Eq. (2) utilizing a two-step GMM estimator for a

spatial autoregressive Cliff-Ord model with endogenous spatially lag dependent variable11, where

the latter is instrumented by the spatial lags of the (strictly exogenous) explanatory variables; this

method further enables us to derive estimates for the standard errors and other statistics which

are robust to heteroskedasticity and autocorrelation.

To show this estimation method, rewrite Eq. (2) as:

Ct = ρYt + Xtη + µ + ϵt

= Ztπ + ut

(3)

where Ct = ln(ct), Yt = W Ct, ut = µ + ϵt, Zt = [Yt, Xt] and π = [ρ, η′]′. Yt is

assumed to be endogenous, whereas Xt strictly exogenous. Now, define as X̄e
t the excluded

exogenous variables represented by the spatial lags of the explanatory variables contained in

the matrix Xt. The set of instruments Ht is provided by the linearly independent columns of
11We additionally assume (and detect at a later stage) no spatial correlation among disturbances.
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{X̄e
t , W X̄e

t , · · · , W qX̄e
t }12, from which it is possible to derive the related instrument projection

matrix PH = Ht(Ht
′Ht)−1Ht

′. The two-step GMM estimator for π, hence writes as:

π̂ = (Z̃t
′
Zt)−1Z̃t

′
Yt (4)

where Z̃t = PHZt. Subsequently, the asymptotic variance-covariance matrix of π̂ is estimated

consistently through the sandwich form:

Σ̂ = (Z̃t
′
Zt)−1Z̃t

′Σ̃Z̃t(Z̃t
′
Zt)−1 (5)

where Σ̃ is the diagonal matrix whose ith element is constituted by the residual ũit
2.

A spatial regression estimated through the GMM produces slightly better (i.e., less biased)

point estimates with compared to other estimators (LeSage, 2014[49]). Nonetheless, in order

to produce more informative results, it becomes necessary to derive from the GMM estimator

the scalar summaries of the partial derivatives, represented by the direct (feedback) and indirect

(spillover) effects (LeSage, 2014[49]). The latter show how changes in the explanatory variables

impact the dependent variable, thus providing more accurate information for the magnitude of the

spatial impacts. To this aim, let specify the predictor for Ct from Eq. (3) in its reduced form as:

Ĉ = (IN − ρW )−1Xtη = E(Ct|Xt, W ) (6)

where IN is an identity matrix of dimension (N x N), and (IN − ρW )−1 represents the

spatial multiplier matrix, which can be reformulated as: (IN − ρW )−1 = (IN + ρW + ρ2W 2 +

ρ3W 3 + · · · + ρqW q). The latter captures the propagation of the spatial effects from one region

to its neighboring regions (ρW ), from neighboring regions to their neighbors (ρ2W 2), and so

on. Due to the fact that the scalar spatial autoregressive parameter is ρ < 1, the impact of the

spatial effects decays with order of neighbors, therefore higher-order neighbors (e.g., neighbors of

neighbors) receive a lower level of impact.

In order to examine the effects of changes in the in the kth exogenous variable, without loss

of generality, let xk = (x1k, · · · , xNk)′ represent the vector of observations for the kth exogenous

variable, so that Ĉ(xk) = {Ĉ1(xk), · · · , ĈN (xk)}. The marginal effects computed as:
12The values for the powers q of matrix W lie in the set {2, 3, · · · , |

√
n|}.
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[
∂Ĉ(xk + πΓ)

∂π

]
t

=

[
∂Ĉ(x1k, · · · , xi−1,k, xik + π, xi+1,k, · · · , xNk)

∂π

]
=

[
∂Ĉ(xk)

∂xik

]
(7)

is the direct (or feedback) effect of a change in the ith unit of xk, computed as a sequential

series of changes of xik for each i = {1, · · · , N}; that is, the direct effect of a change in a certain

regressor (let us say, per household income) in a certain region on the per household level of CO2

emissions within the same region, as a consequence of impacts passing through neighboring regions

and back to a region itself (Debarsy et al., 2012[23]). Γ = [0, · · · , 0, 1, 0, · · · , 0]′ is the ith column

of the identity matrix. Subsequently, when considering the effect of a simultaneous change of

x1k, · · · xNk, for a specific Ĉi, it is possible to derive:

[
∂Ĉi(xk + π11)

∂π

]
t

=

[
∂Ĉi(x1k + π, · · · , xik + π, · · · , xNk + π)

∂π

]
=

[
N∑

r=1

∂Ĉi(xk)
∂xrk

]
(8)

which denotes the total effect, where 11 = [1, · · · , 1] is a column vector entirely composed by

1s. Thus, subtracting the direct effect from the total effect provides the indirect (or spillover)

effect. The latter has acquired particular relevance in the spatial econometric literature, since

quantifying the presence of spatial spillovers among spatial units provides important pieces of

information. Specifically, the indirect effect measures the impact of a change in a certain regressor

in a certain region on the dependent variable of neighboring regions; with reference to the income

variable, for instance, it allows to detect how variations in per household income in a certain

region affects the per household level of CO2 emissions in neighboring regions. In this context, the

derivation of the indirect effect represents a powerful method to detect the presence of displacement

effects in pollution costs among households living in different regions, since displacement effects

generally follow spatial propagation patterns (Roca, 2003[68]). In addition, the indirect effect

constitutes a better and more refined method to analyze displacement effects with respect to the

spatial point estimates utilized by Maddison (2006)[53]. Following Maddison (2006)[53], in order

for the hypothesis of displacement effects to be verified, the spatial estimate for the income variable

should hold a positive sign; contrariwise, negative or non significant estimates shall invalidate the

hypothesis of displacement effects.
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4 Empirical results

4.1 Tests for spatial dependence

As is it common in the literature, before proceeding with the econometric estimates, we firstly

assess the degree of spatial autocorrelation in the carbon dioxide emission levels produced by

households living in the different regions. As a matter of fact, given that numerous studies have

detected significant degrees of spatial autocorrelation among global levels of CO2 emissions, we have

no reason not to believe that emissions deriving from household activities could not be spatially

autocorrelated. The two most common spatial indexes utilized to test for spatial autocorrelation

are represented by the Moran’s I and Geary’s c statistics. In their cross-sectional form, the two

test statistics for C (Eq. 3) are, respectively:

I =
N

∑
i

∑
j wij(Ci − C̄)(Cj − C̄)

(
∑

i

∑
j wij)

∑
i(Ci − C̄)

(9)

c =
(N − 1)

∑
i

∑
j wij(Ci − Cj)2

2(
∑

i

∑
j wij)

∑
i(Ci − C̄)

(10)

where C̄ represents the mean of C. The main difference between the two indicators is that

the Moran’s I assumes that the spatial interaction among units lies in the cross product of the

deviations from the mean, whereas the Geary’s c assumes that the same interaction stems from the

deviation in intensities of each spatial unit with one another. Accordingly, the Moran’s I lies in the

interval [-1,1], with +1 entailing complete positive spatial autocorrelation and -1 complete negative

spatial autocorrelation13, whereas the Geary’s c index is bounded in the interval [0,2]; a value of

1 indicates no spatial autocorrelation, a value of 0 complete positive spatial autocorrelation, and

a value of 2 complete negative spatial autocorrelation.

To sum up, the Geary’s c statistic puts more emphasis on the difference in the values between

pairs of observations, whereas the Moran’s I assesses the co-variation between the different pairs.

Because of this, the Moran’s I is generally reputed to constitute a better and more robust global

indicator for spatial autocorrelation compared to the Geary’s c (Anselin, 1995[5]). The cross-

section Moran’s I test statistic was later extended for panel data in order to take into account the
13In the case of positive autocorrelation, regions with a similar level of household emissions of CO2 tend to be

concentrated geographically, whereas values close to zero indicate random spatial patterns.

14



temporal dimension (Ren et al., 2014[67]). Its expression is the following:

I = ν′(IT ⊗ WNT )ν
ν′ν

(11)

where ⊗ is the Kronecker product, WNT = IT ⊗ W is a block diagonal matrix inclusive of the

cross-sectional spatial weight matrix expanded over the time period T , and ν is the residual. We

report in Tab. 2. the z-values and p-values for the Moran’s I and Geary’s c test statistics based on

the spatial weight matrix derived from the Delaunay triangulation. As a robustness check, we also

report the estimates obtained using the spatial weight matrices based on contiguity and inverse

distance squared (IDS)14.

[INSERT TAB. 2 ABOUT HERE]

In all the three cases, a significant degree of spatial association emerges with reference to CO2

emissions deriving from household activities among Italian regions15.

As a subsequent step, in order to decompose the Moran’s I at the level of each spatial unit, we

derive the local indicator of spatial association (LISA), or local Moran’s Ii, which allows to derive

the influence exerted by each individual location on the total magnitude of the global Moran’s

statistic (Anselin, 1995[5]). The formula to compute the LISA is the following:

Ii = (Ci − C̄)∑
i(Ci − C̄)2

∑
j

wij(Ci − C̄) (12)

The corresponding LISA cluster map for emissions deriving from household activities is re-

ported in Fig. 4. Specifically, three different types of local spatial autocorrelation emerge among

regions: high-high (when regions displaying high levels of CO2 emissions neighbor with regions

displaying similar high levels of CO2 emissions), low-low (when regions displaying low levels of

CO2 emissions neighbor with regions displaying similar low levels of CO2 emissions), and low-high
14Compared to the inverse distance to the power of 1, the inverse distance to the power of 2 is likely to provide

more reliable spatial weights, since it respects the inverse-square law (Hoyle, 2001[39]).
15Notice that the values obtained with the spatial weight matrix based on contiguity differ from the same values

obtained with the other two weight matrices (which conversely, appear close to each other). As discussed above,

the reason is likely due to the presence of two isolated spatial units whose spatial effect is not considered by the

contiguity matrix, since the two islands do not share a border with any other region.
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(when regions displaying low levels of CO2 emissions neighbor with regions displaying high levels

of CO2 emissions). The results emerging from Fig. 4 remain virtually constant throughout all the

years in question, and provide more detailed information on the localisation of spatial patterns in

CO2 emissions from households living in different regions. From Fig. 4, a duality in the emission

patterns emerges among Northern and Southern provinces, with the former registering high levels

of emissions, whereas the latter lower (but still highly significantly spatially correlated) levels of

emission. Per contrary, this North-South dicotomy in emission levels further reflects a North-South

gap in the average per capita income levels of households; indeed, such disparities in the income

levels are not only reflected among neighboring regions, but above all when differentiating from

Southern and Northern regions, with the latter denoting a higher level of per capita income than

the Southern regions.

As highlighted by other spatial econometric studies on the EKC, different causes can be

postulated for the emergence of significant spatial interactions among emissions. In our case, a

reasonable explanation may likely reside in the hypotheses of conformity and imitative consumption

behavior assumed in the behavioral economic theory, where the utility of agents in consuming

a (non-environmental) good (in this case, the utility deriving from polluting activities such as

transport, heating, etc.) is also positively affected, in a spatial framework, by the consumption

level exerted by the other agents (Grilo et al., 2001[35]; Corneo and Jeanne, 1997[20]). Overall,

these results provide a preliminary and significant evidence for incorporating spatial dependence in

the empirical analysis, since ignoring spatial effects could likely lead to biased estimation results.

4.2 Unit root and cointegration tests

Before estimating the panel regression models, panel unit root tests should be conducted to assess

whether the assumption of stationarity of the data is not violated. In this regard, among the first

generation unit root tests vastly utilized in the environmental literature (such as the Levin-Lin-

Chu (LLC) and the Augmented Dickey Fuller (ADF) tests (Zhou and Wang, 2018[83]; Danish et

al., 2017[21], Kharbach and Chfadi, 2017[45]; Dong et al., 2016[27])), the Harris-Tzavalis (HT)

test assumes that the number of time periods is fixed, and it is particularly indicated for micro-

level studies (Baltagi, 2005[9]). Nonetheless, the main drawback of these tests is that they do not

account for potential cross-sectional dependence among disturbances of cross-sectional units, which,

if ignored, may affect the first order properties (of unbiasedness and consistency) of standard panel

estimators, in this way leading to misleading results (Sarafidis and Wansbeek, 2011[70]). To cope
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with this issue, we hence run the cross-section Augmented Dickey-Fuller (CADF) and the cross-

sectionally Im-Pesaran-Shin (CIPS) second generation unit root tests, which are robust to cross-

sectional dependence among units (Pesaran, 2007[65]; Im et al., 2003[40]). Prior to conducting the

CADF and CIPS tests, we firstly test for cross-sectional dependence. For this purpose, we carry out

the Pesaran and Friedman tests for cross-sectional dependence, which, compared to the standard

Breusch-Pagan LM test, are more suitable in the presence of reduced time dimension (Pesaran,

2003[64]). The results of the tests indicate, respectively, a test statistic of 14.433 (p < 0.01) and

39.646 (p < 0.05), thus rejecting the null hypothesis of no cross-sectional dependence. It hence

appears that second generation unit root tests are more indicated to test for the presence of unit

roots. These tests are carried out on the non-spatial model expressed in Eq. (1). In addition,

Monte Carlo simulations have proved that the CADF test holds satisfactory power in small samples

and is quite robust to the presence of structural breaks. The test is defined as follows:

CD =

√
2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

õij

 =⇒ N(0, 1) (13)

which results to be asymptotically normally distributed for N → ∞. ôij is the sample estimate

of correlation of residuals, which can be further rewritten as:

õij = õji =
∑T

t=1 ϵ̃itϵ̃jt

(
∑T

t=1 ϵ̃it
2) 1

2 (
∑T

t=1 ϵ̃jt
2) 1

2
(14)

The results of the CADF and CIPS test statistics are reported in Tab. 3. For the sake of

completeness, we also report the results of the Harris-Tzavalis test. From Tab. 3, it emerges how

cross-sectional dependence represents a severe problem in our dataset. Indeed, ignoring such a

issue would lead to reject the null hypothesis of unit root in the HT test, whereas unit roots are

contrariwise detected in the CADF and CIPS test statistics, which are robust to cross-sectional

dependence. According to the CADF and CIPS statistics, for all the variables, the null hypothesis

of non-stationarity cannot be rejected. Nonetheless, the variables prove to be integrated of order

one, since they all become stationary at the 1% significance level after first differencing.

[INSERT TAB. 3 ABUT HERE]

Due to the fact that the variables are not stationary in levels, a long-run meaningful rela-
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tionship exists among emissions, income and household size, only if the latter are cointegrated,

so that their linear combination results stationary, displaying a constant covariance over time. In

order to test for cointegration, we run the Kao’s residual cointegration test. This test is based

on a Monte Carlo procedure, and is more reliable than the standard Pedroni cointegration test

in case of a reduced time dimension (Kao, 1999[44]; Pedroni, 1999[63]). Specifically, the Kao test

implements Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) type tests in evaluating the

null hypothesis of no cointegration. Besides, the Pedroni and the Kao test are both based on the

Engle-Granger (1987) two-step (residual-based) cointegration tests (Engle and Granger, 1978[31]),

but Kao employs cross-section specific intercepts and homogeneous coefficients in the first-stage

regressors. The results of the Kao cointegration test are reported in Tab. 4. For the sake of

completeness, we also report the results from the Pedroni cointegration test.

[INSERT TAB. 4 ABUT HERE]

From Tab. 4, it emerges how the null hypothesis of no cointegration among variables is strongly

rejected in both cointegration tests. This suggests that emissions, income and household size have

a long-run relationship, and consequently, their coefficient estimates are statistically meaningful.

4.3 Econometric estimates

We begin the analysis by estimating the non-spatial model of Eq. 1 with a fixed-effects estimator.

Utilizing the spatial weight matrix based on Delaunay triangulation, we subsequently conduct LM

and robust LM tests on the estimated residuals from the non-spatial estimate in order to verify the

validity of our spatial model specification. Specifically, we test the two null hypotheses assuming,

respectively, no spatially lagged dependent variable and no spatially autocorrelated error terms.

The corresponding test statistics (Tab. 5) all suggest the inclusion of a spatially lagged dependent

variable. By contrast, the results of the robust LM test cast some doubts on the inclusion of a

spatially correlated error term. The Hausman test is additionally performed to assess whether the

fixed-effects estimator is to be selected over the random-effects estimator, and this appears to be

the case from the results of the test statistic. Finally, we test the assumption of normality of the

error terms by computing the test statistic developed by Galvao et al. (2013)[34] on the residuals

of the non-spatial specification; the Galvao test follows a chi-squared distribution and it is designed
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for linear panel data models. From the Galvao test results, the null hypothesis of normality for

the error components is rejected (6.45, p < 0.05), and this therefore suggests that the utilization

of the GMM estimator appears to be preferred over the standard ML estimator (which assumes

normally distributed disturbances for the estimate of the SAR model).

[INSERT TAB. 5 ABOUT HERE]

After having validated the choice of our model specification and estimator, the two-step effi-

cient GMM estimator is subsequently utilized to estimate the SAR model of Eq. 216, utilizing the

weight matrix computed through Delaunay triangulation. As a robustness check, we re-estimate

Eq. 2 using the maximum log-likelihood estimator, as well as selecting different weight matrices

besides the one derived from the Delaunay triangulation. The results of the econometric estimates

are reported in Tab. 6.

[INSERT TAB. 6 ABOUT HERE]

From the table, a significant and positive value for the spatial autoregressive parameter (ρ)

emerges, thus denoting the presence of spatial interactions among regions in household emissions of

CO2. In other words, carbon dioxide emissions deriving from household activities in a region exert

on average a positive effect on the same carbon dioxide emissions in neighboring regions. Specif-

ically, if the average level of household emissions of CO2 in neighboring regions increases by ten

percentage points, the same CO2 emission level in a particular region increases, ceteris paribus, by

around 3.86%. On the other hand, the coefficient estimates for the income variable do not provide

evidence for the validity of an inverted U-shaped relationship between income and pollution for the

non-spatial model specifications. The U-shaped relationship hypothesis is also rejected when con-

sidering the same estimates for the spatial model specifications. This suggests that income growth

pushes households to outweigh their preference of consumption for non-environmental commodities
16All the relevant test statistics confirm the validity of the instruments used in the GMM estimation procedure;

Kleibergen-Paap LM statistics for underidentification result to be sufficiently large, thus suggesting that the model

is well identified (Roychowdhury, 2019[69]). In addition, statistically significant Cragg-Donald Wald F-statistics

exclude the issue of weak instruments, and non significant values for the Hansen J-statistics suggest that the

orthogonality condition between the instruments and the error terms is satisfied (Bazzi and Clemens, 2013[12]).
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over environmental quality. Finally, in line with the findings detected by previous empirical studies

(Levinson and O’Brien, 2019[50]; Druckman and Jackson, 2016[28]), household size proves to exert

a notable impact on household emissions in all model specifications. Although of interest, in order

to obtain a more informative interpretation of results for the spatial models, it becomes necessary

to derive the marginal effects through partial derivative measures, thus allowing to split the total

spatial effect into direct and indirect effects (Elhorst (2010)[30]; LeSage and Pace, (2009)[48]). As

mentioned above, the latter captures spillover effects propagating among regions and it is used to

test the validity of the displacement effects hypothesis. The coefficient estimates for the direct,

indirect and total spatial effects are reported in Tab. 7.

[INSERT TAB. 7 ABOUT HERE]

Overall, the econometric results of Tab. 7 provide additional strength to the significance

of spatial effects, whose total effects slightly exceed in magnitude the corresponding coefficient

estimates for the non-spatial specifications of Tab. 6. These results suggest important implications.

Firstly, the negative and significant coefficient estimates for the indirect effect related to income do

not validate the hypothesis assuming displacement effects in environmental costs among households

living in regions with different levels of income. In other words, neighboring with regions whose

individuals possess on average a higher level of income, is associated here with lower, rather than

higher, levels of household carbon dioxide emissions. Specifically, an increase of 10 percentage

points in the level of household income in a region is associated to a reduction of around 2.26%

in household emissions in neighboring regions. This entails, thus, that negative environmental

outcomes are not externalized to neighboring regions. Secondly, the income coefficient estimates

for the total effect confirm a U-shaped relationship between per household income and emissions

per household, with an income elasticity lower than one. Eventually, higher growth does not

lead in this case to environmental improvement. This result consequently casts some doubt on the

hypothesis assuming an income elastic environmental demand by Italian households; conversely, the

econometric results indicate that the income elasticity of households for carbon dioxide emissions

increases with income; specifically, it is negative for low levels of income, to then become positive

after the turning point (corresponding to an income of 24,625 euros). This finding suggests that

when individuals become richer, their preferences switch from public to private goods, at the

expense of environmental improvement. In other words, the marginal utility of households for
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non-environmental commodities increases, coupled with a lack of significant increases in their

marginal disutility for environmental degradation, so that environmental quality is not perceived

as a luxury good, on average, by Italian households. These findings are in line with the ones

detected by Bimonte and Stabile (2017)[13] for land consumption in Italy over a similar time

horizon, and this might suggest that the disutility for environmental degradation deriving from

individuals’ preferences in Italy remains similar regardless from the indicator of environmental

degradation considered. Finally, the coefficient estimates for household size remain significant,

exhibiting significant spatial dependence, both at the intra-regional and inter-regional level17.

5 Conclusion

In this paper, we empirically explored the relationship between household income and carbon

dioxide emissions deriving from household activities as framed by the environmental Engel curve

(EEC). Specifically, the EEC describes the relationship between household income and the amount

of pollution embodied in the goods and services that the same households consume, ruling out all

the sources of pollution which do not derive from individuals’ activities. Contrarily to the en-

vironmental Kuznets curve (EKC), the emergence of an inverted U-shaped relationship between

household income and pollution in the EEC is mainly attributed to changes in individuals’ pref-

erences for environmental goods following increases in their level of income. In other words, the

inverted U-shaped relationship entails that individuals perceive environment as a luxury good, thus

denoting an elastic income elasticity of demand for environmental quality. For the analysis, we

constructed a strongly balanced panel data of carbon dioxide (CO2) emissions deriving from house-

hold activities aggregated at the regional level, in order to furnish accurate estimates of household

income elasticities for environmental degradation. In addition, following the literature, we also

controlled for household size, since this variable has proven to exert a crucial impact in affecting
17 We additionally performed a solid robustness check for the coefficient estimates utilizing the Stata command

rcheck. Specifically, we re-estimated Eq.1 through a fixed effects estimator considering as core variables inc and

(inc)2 and as testing variables hsize, together with individual and time effects. From the tests, the stability of the

coefficient estimates in terms of invariance of sign and level of significance is overall satisfactory when including and

excluding all the different sets of covariates obtained through the combination of the testing variables. Results only

denote a slight worsening in the level of significance when considering time periods before 2002, thus suggesting

strong evidence for the emergence of a significant U-shaped relationship between per household carbon dioxide

emissions and income starting from the early ‘2000s. The results of the robustness check tests are available upon

requests.
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the level of household carbon dioxide emissions. Subsequently, we utilized spatial econometrics to

test the hypothesis of displacement effects of pollution costs posited in the theoretical literature,

according to which individuals living in higher-income regions may simply shift pollution costs

to lower-income regions. In accordance to the literature, the usage of spatial econometric models

allows to capture the degree of spatial dependence among variables, thus overcoming potential

issues of omitted variable bias. Furthermore, spatial econometrics constitutes an effective way to

better evaluate the hypothesis of displacement effects in pollution costs, since the latter follow

spatial propagation patterns. Specifically, if displacement effects occur, the assumption of shift in

individuals’ preferences leading to an inverted U-shaped relationship between household pollution

and income is likely invalidated.

For the analysis, we utilized both non-spatial and spatial econometric techniques; specifically,

besides a standard fixed-effects estimator, we estimated a spatial autoregressive model with fixed

effects (SAR-FE), using a two-step efficient GMM estimator; the latter presents computational

advantages compared to the standard ML estimator generally utilized in the spatial econometric

literature; above all, it does not require any a priori specification of the distributional form of the

data. In addition, we used the Delaunay triangulation algorithm for constructing a more refined and

reliable spatial weight matrix, in order to better frame the level of spatial dependence among spatial

units. The results obtained from the econometric estimates provide important insights; first, the

inverted U-shaped relationship hypothesis between between per household carbon dioxide emissions

and per household real personal income does not find empirical support in any model specification;

conversely, a U-shaped relationship is detected in both non-spatial and spatial models, with an

income elasticity of households for carbon dioxide emissions increasing with income. Second,

the coefficient estimates for the indirect effect measuring spillovers invalidate the hypothesis of

displacement effects according to which households living in higher-income regions transfer the

costs of pollution to households living in lower-income regions.

In the end, these results suggest that environmental quality is on average not perceived as an

income-elastic commodity by Italian households; conversely, it seems that the marginal utility of

households in consuming non-environmental goods augments with income growth, and at the same

time, the marginal disutility for environmental degradation does not increase. In other words, on

average, the private valuation of non-environmental commodities by Italian households prevails over

the social valuation of environmental quality. In addition, our findings provide further support to

the study of Bimonte and Stabile (2017)[13], who also detected the prevalence of private over social
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valuation of resources by Italian consumers when considering land consumption as environmental

indicator. Always as highlighted by Bimonte and Stabile (2017)[13], the exact reasons for which

Italian households tend on average to evaluate private over social valuation of resources remains

an open question worthy of additional research. Ultimately, however, all this inevitably calls for

the need, by the Italian authorities, to design better environmental policies aimed at increasing

citizens’ awareness on environmental issues; an improved redefinition of the governance concerning

the environmental regulatory legislation, and a more active political participation in environmental

matters could help in this regard. Despite our findings, however, this study could suffer of some

limitations, most of which related to the aforementioned issues reported in Section 2. In addition, as

stated by Baek (2015)[7], there might possibly be additional factors impacting on the level of CO2

emissions, which if neglected could pose issues of omitted variable bias, thus potentially leading to

differences in the estimates (nonetheless, in our case, when performing different robustness checks,

the income-pollution relationship has been proven to remain rather stable). Ultimately, however,

all these issues represents a common problem for every study analyzing the growth-environment

nexus, especially when utilizing reduced form equations. It can be the case that the usage of more

complete models, for instance utilizing structural models, could bring benefits to this analysis, thus

shedding more light on the important issue of household environmental behavior.
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Figure 1: Income elasticity for environmental demand.
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Figure 2: Total levels of CO2 emissions deriving from household and economic

activities in Northern and Southern Italy (1995-2008). Souce: NAMEA dataset.

Figure 3: Spatial weight Matrix of Italy based on Delaunay

triangulation.
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Figure 4: Local Moran’s Ii (LISA) for CO2 emissions, 1995-

2008. Computations carried out with the GeoDa v1.12 software.
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Table 1: Descriptive statistics.

Localisation Variable Mean St. dev. Min. Max.
North-West co2 6.69 2.98 3.88 12.90

inc 28790.78 2194.95 23900.50 32990.55
hsize 2.69 0.22 2.36 3.04

Nort-East co2 5.78 1.04 4.55 12.66
inc 28223.98 2653.48 21415.26 34529.18
hsize 2.68 0.23 2.31 3.05

South-West co2 3.61 0.71 2.30 4.54
inc 25838.74 2864.51 20216.67 33267.95
hsize 2.70 0.22 2.34 3.07

South-East co2 2.99 0.26 2.43 3.40
inc 23108.34 1692.52 19260.75 26726.71
hsize 2.70 0.21 2.37 3.03

Note: co2 represents carbon dioxide emissions per household (in metric tonnes),

inc real per household personal income (in Euros), and hsize household size (in

number of members living in the household).

.

.
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Table 2: Tests for global spatial autocorrelation of co2 with different spatial weight matrices.

Year
Moran’s I Geary’s c

Delaunay IDS Contiguity Delaunay IDS Contiguity
1995 0.499*** 0.497*** 0.546*** 0.453*** 0.434** 0.316**
1997 0.498*** 0.499*** 0.548*** 0.453*** 0.432** 0.312**
1999 0.497*** 0.498*** 0.548*** 0.454*** 0.432** 0.310**
2001 0.497*** 0.503*** 0.557*** 0.453*** 0.426*** 0.301**
2003 0.492*** 0.499*** 0.554*** 0.457*** 0.428*** 0.301**
2005 0.482*** 0.490*** 0.545*** 0.466*** 0.433** 0.305**
2008 0.478*** 0.491*** 0.539*** 0.469*** 0.430** 0.305**

Note: levels of significance: *p<0.10, **p<0.05, and ***p<0.01. Tests performed with

spatial weight matrices based on: Delaunay triangulation, inverse distance squared (IDS)

and contiguity.

Table 3: Panel unit root test results.

Variable
CADF CIPS HT
Levels First difference Levels First difference Levels First difference

Intercept co2 -1.074 -3.155*** -1.040 -3.255*** 0.2755***
inc -1.142 -4.047*** -1.140 -3.950*** 0.5874***
(inc)2 -1.399 -3.590*** -1.399 -3.420*** 0.4008***
hsize -1.970 -3.310*** -2.136 -3.280*** 0.9405 0.1428***

Intercept
and trend co2 -2.257 -3.743*** -2.325 -4.010*** 0.0964***

inc -2.293 -4.409*** -2.460 -4.067*** 0.2777**
(inc)2 -2.245 -3.570*** -2.245 -3.405*** 0.3512**
hsize -2.204 -3.140*** -2.204 -3.140*** 0.6772 0.1880***

Note: levels of significance: *p<0.10, **p<0.05, and ***p<0.01. Optimal lag lengths selected through bayesian infor-

mation criterion (BIC).

Table 4: Results from the Kao and Pedroni cointegration tests.

Kao Pedroni
DF-t ADF-t Intercept Intercept and trend

Statistic -9.3174 -5.2712 6.0849 5.3320
p-value 0.000 0.000 0.000 0.000

Note: optimal lag lengths selected through bayesian information criterion

(BIC).
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Table 5: Diagnostic tests for spatial specification.

Test Test statistic ... p-value
LM

Spatial lag 55.417 0.000
Spatial error 39.924 0.000

Robust LM
Spatial lag 15.622 0.000
Spatial error 0.130 0.719

Hausman 33.580 0.000

Note: all tests follow a chi-squared distribution.

Table 6: Econometric estimates.

Variable
Fixed Effects Maximum log-likelihood Two-step GMM

Delaunay IDS Contiguity Delaunay IDS Contiguity

ρ
0.408** 0.382** 0.357** 0.386** 0.337** 0.304
(0.1443) (0.1698) (0.1238) (0.1738) (0.1771) (0.3416)

inc
-0.511** -0.348** -0.363** -0.392** -0.272** -0.325** -0.369**
(0.1238) (0.1713) (0.1814) (0.1520) (0.0885) (0.0966) (0.1791)

(inc)2 0.011*** 0.007* 0.008* 0.008** 0.006** 0.006** 0.007*
(0.0027) (0.0041) (0.0043) (0.0037) (0.0020) (0.0022) (0.0039)

hsize
0.198*** 0.130*** 0.130*** 0.150*** 0.156*** 0.165*** 0.183**
(0.0450) (0.0302) (0.0340) (0.0311) (0.0427) (0.0422) (0.0728)

Region FE YES YES YES YES YES YES YES
Sigma-squared res. 0.0023300 0.0018534 0.0018599 0.0018876 0.0021483 0.0021958 0.0023271
Kleibergen-Paap LM
test (Prob. < χ2) 0.005 0.000 0.002

Hansen J test (Prob. < χ2) 0.1441 0.1322 0.1718
F-test statistic 467.82 25.91 17.44 40.78 2711.03 2476.73 1154.81
Log-likelihood 432.4343 478.0172 476.4493 475.7076 475.2535 472.2161 417.903

Note: all variables are expressed in natural logarithms. Levels of significance: *p<0.10, **p<0.05, and ***p<0.01. Standard errors in

parenthesis.
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Table 7: Marginal effects of the SAR-FE model.

Test Direct effect Indirect effect Total effect

inc
-0.365*** -0.226** -0.591***
(0.0739) (0.0652) (0.1195)

(inc)2 0.008*** 0.005** 0.012***
(0.0020) (0.0015) (0.0031)

hsize
0.137*** 0.085** 0.221***
(0.0389) (0.0298) (0.0624)

Note: all variables are expressed in natural logarithms.

Levels of significance: *p<0.10, **p<0.05, and ***p<0.01.

Standard errors in parenthesis.
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